Sbornik: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sbornik: Mathematics, 2011, Volume 202, Issue 1, Pages 9–33
DOI: https://doi.org/10.1070/SM2011v202n01ABEH004136
(Mi sm7713)
 

This article is cited in 9 scientific papers (total in 9 papers)

Characterization of the sets of divergence for sequences of operators with the localization property

G. A. Karagulyan

Institute of Mathematics, National Academy of Sciences of Armenia
References:
Abstract: General theorems characterizing the sets of divergence for sequences of operators with the localization property are established and then used to obtain a complete characterization of the sets of divergence for Fourier series and their Cesàro means in classical orthonormal systems.
Bibliography: 28 titles.
Keywords: localization property of operators, sets of divergence, $G_{\delta\sigma}$-sets.
Received: 16.03.2010 and 14.06.2010
Russian version:
Matematicheskii Sbornik, 2011, Volume 202, Number 1, Pages 11–36
DOI: https://doi.org/10.4213/sm7713
Bibliographic databases:
Document Type: Article
UDC: 517.518.362
MSC: 42A20
Language: English
Original paper language: Russian
Citation: G. A. Karagulyan, “Characterization of the sets of divergence for sequences of operators with the localization property”, Mat. Sb., 202:1 (2011), 11–36; Sb. Math., 202:1 (2011), 9–33
Citation in format AMSBIB
\Bibitem{Kar11}
\by G.~A.~Karagulyan
\paper Characterization of the sets of divergence for sequences of operators with the localization property
\jour Mat. Sb.
\yr 2011
\vol 202
\issue 1
\pages 11--36
\mathnet{http://mi.mathnet.ru/sm7713}
\crossref{https://doi.org/10.4213/sm7713}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2796825}
\zmath{https://zbmath.org/?q=an:1217.42009}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2011SbMat.202....9K}
\elib{https://elibrary.ru/item.asp?id=19066234}
\transl
\jour Sb. Math.
\yr 2011
\vol 202
\issue 1
\pages 9--33
\crossref{https://doi.org/10.1070/SM2011v202n01ABEH004136}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000290670400002}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-79955592823}
Linking options:
  • https://www.mathnet.ru/eng/sm7713
  • https://doi.org/10.1070/SM2011v202n01ABEH004136
  • https://www.mathnet.ru/eng/sm/v202/i1/p11
  • This publication is cited in the following 9 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник Sbornik: Mathematics
    Statistics & downloads:
    Abstract page:741
    Russian version PDF:232
    English version PDF:19
    References:101
    First page:43
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024