Sbornik: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sbornik: Mathematics, 2010, Volume 201, Issue 10, Pages 1511–1538
DOI: https://doi.org/10.1070/SM2010v201n10ABEH004120
(Mi sm7700)
 

This article is cited in 5 scientific papers (total in 5 papers)

Incomplete integrable Hamiltonian systems with complex polynomial Hamiltonian of small degree

T. A. Lepskii

M. V. Lomonosov Moscow State University, Faculty of Mechanics and Mathematics
References:
Abstract: Complex Hamiltonian systems with one degree of freedom on $\mathbb C^2$ with the standard symplectic structure $\omega_\mathbb C=dz\wedge dw$ and a polynomial Hamiltonian function $f=z^2+P_n(w)$, $n=1,2,3,4$, are studied. Two Hamiltonian systems $(M_i,\,\operatorname{Re}\omega_{\mathbb C,i},\,H_i=\operatorname{Re}f_i)$, $i=1,2$, are said to be Hamiltonian equivalent if there exists a complex symplectomorphism $M_1\to M_2$ taking the vector field $\operatorname{sgrad}H_1$ to $\operatorname{sgrad}H_2$. Hamiltonian equivalence classes of systems are described in the case $n=1,2,3,4$, a completed system is defined for $n=3,4$, and it is proved that it is Liouville integrable as a real Hamiltonian system. By restricting the real action-angle coordinates defined for the completed system in a neighbourhood of any nonsingular leaf, real canonical coordinates are obtained for the original system.
Bibliography: 9 titles.
Keywords: integrable Hamiltonian system, Hamiltonian equivalence of systems, incompleteness of flows of Hamiltonian fields, completed Hamiltonian system, action-angle variables.
Received: 27.02.2010 and 24.03.2010
Russian version:
Matematicheskii Sbornik, 2010, Volume 201, Number 10, Pages 109–136
DOI: https://doi.org/10.4213/sm7700
Bibliographic databases:
Document Type: Article
UDC: 517.938.5+514.756.4
MSC: Primary 37J35; Secondary 37J05, 70H06
Language: English
Original paper language: Russian
Citation: T. A. Lepskii, “Incomplete integrable Hamiltonian systems with complex polynomial Hamiltonian of small degree”, Mat. Sb., 201:10 (2010), 109–136; Sb. Math., 201:10 (2010), 1511–1538
Citation in format AMSBIB
\Bibitem{Lep10}
\by T.~A.~Lepskii
\paper Incomplete integrable Hamiltonian systems with complex polynomial Hamiltonian of small degree
\jour Mat. Sb.
\yr 2010
\vol 201
\issue 10
\pages 109--136
\mathnet{http://mi.mathnet.ru/sm7700}
\crossref{https://doi.org/10.4213/sm7700}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2768826}
\zmath{https://zbmath.org/?q=an:1214.37041}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2010SbMat.201.1511L}
\elib{https://elibrary.ru/item.asp?id=19066168}
\transl
\jour Sb. Math.
\yr 2010
\vol 201
\issue 10
\pages 1511--1538
\crossref{https://doi.org/10.1070/SM2010v201n10ABEH004120}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000285190300005}
\elib{https://elibrary.ru/item.asp?id=16975902}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-78650403038}
Linking options:
  • https://www.mathnet.ru/eng/sm7700
  • https://doi.org/10.1070/SM2010v201n10ABEH004120
  • https://www.mathnet.ru/eng/sm/v201/i10/p109
  • This publication is cited in the following 5 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник Sbornik: Mathematics
    Statistics & downloads:
    Abstract page:534
    Russian version PDF:207
    English version PDF:15
    References:66
    First page:19
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024