|
This article is cited in 14 scientific papers (total in 14 papers)
Convergence of series of simple partial fractions in $L_p(\mathbb R)$
I. R. Kayumov N. G. Chebotarev Research Institute of Mathematics and Mechanics, Kazan State University
Abstract:
A necessary and sufficient condition for the series $\sum_{k=1}^\infty \frac{1}{t-z_k}$, $|z_k|<C |y_k|$, to converge in $L_p(\mathbb{R})$, $p>1$, is obtained.
Bibliography: 5 titles.
Keywords:
simple partial fractions, Hardy's inequality, Fourier transform, Dirichlet series.
Received: 04.02.2010 and 08.04.2011
Citation:
I. R. Kayumov, “Convergence of series of simple partial fractions in $L_p(\mathbb R)$”, Sb. Math., 202:10 (2011), 1493–1504
Linking options:
https://www.mathnet.ru/eng/sm7688https://doi.org/10.1070/SM2011v202n10ABEH004196 https://www.mathnet.ru/eng/sm/v202/i10/p87
|
|