Sbornik: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sbornik: Mathematics, 2011, Volume 202, Issue 6, Pages 859–886
DOI: https://doi.org/10.1070/SM2011v202n06ABEH004169
(Mi sm7676)
 

This article is cited in 17 scientific papers (total in 17 papers)

On the colouring of spheres embedded in $\mathbb R^n$

A. B. Kupavskii

M. V. Lomonosov Moscow State University, Faculty of Mechanics and Mathematics
References:
Abstract: The work concerns the well-known problem of identifying the chromatic number $\chi(\mathbb R^n)$ of the space $\mathbb R^n$, that is, finding the minimal number of colours required to colour all points of the space in such a way that any two points at distance one from each other have different colours. A new quantity generalising the chromatic number is introduced in the paper, namely, the speckledness of a subset in a fixed metric space. A series of lower bounds for the speckledness of spheres is derived. These bounds are used to obtain general results lifting lower bounds for the chromatic number of a space to higher dimensions, generalising the well-known ‘Moser-Raisky spindle’. As a corollary of these results, the best known lower bound for the chromatic number $\chi(\mathbb R^{12})\geqslant 27$ is obtained, and furthermore, the known bound $\chi(\mathbb R^4)\geqslant 7$ is reproved in several different ways.
Bibliography: 23 titles.
Keywords: chromatic number, distance graph, speckledness of a set.
Received: 29.12.2009 and 16.09.2010
Bibliographic databases:
Document Type: Article
UDC: 519.174
MSC: 05C15
Language: English
Original paper language: Russian
Citation: A. B. Kupavskii, “On the colouring of spheres embedded in $\mathbb R^n$”, Sb. Math., 202:6 (2011), 859–886
Citation in format AMSBIB
\Bibitem{Kup11}
\by A.~B.~Kupavskii
\paper On the colouring of spheres embedded in~$\mathbb R^n$
\jour Sb. Math.
\yr 2011
\vol 202
\issue 6
\pages 859--886
\mathnet{http://mi.mathnet.ru//eng/sm7676}
\crossref{https://doi.org/10.1070/SM2011v202n06ABEH004169}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2849314}
\zmath{https://zbmath.org/?q=an:1246.05057}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2011SbMat.202..859K}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000294703200012}
\elib{https://elibrary.ru/item.asp?id=19066285}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-80052774458}
Linking options:
  • https://www.mathnet.ru/eng/sm7676
  • https://doi.org/10.1070/SM2011v202n06ABEH004169
  • https://www.mathnet.ru/eng/sm/v202/i6/p83
  • This publication is cited in the following 17 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник Sbornik: Mathematics
    Statistics & downloads:
    Abstract page:629
    Russian version PDF:186
    English version PDF:15
    References:84
    First page:33
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024