Sbornik: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sbornik: Mathematics, 2003, Volume 194, Issue 9, Pages 1301–1330
DOI: https://doi.org/10.1070/SM2003v194n09ABEH000766
(Mi sm766)
 

This article is cited in 7 scientific papers (total in 7 papers)

Vassiliev invariants classify plane curves and doodles

A. B. Merkov

Institute of Systems Analysis, Russian Academy of Sciences
References:
Abstract: An ornament is a system of oriented closed curves in a plane or some other 2-surface no three of which intersect at one point. Similarly, a doodle is a collection of oriented closed curves without triple points or degenerations. Homotopy invariants of ornaments and doodles are natural analogues of homotopy and isotopy invariants of links, respectively. The Vassiliev theory of finite-order invariants of ornaments and the constructions of certain series of such invariants can be applied to doodles. It is proved that these finite-order invariants classify doodles. Similar finite-order invariants of connected oriented closed curves classify doodles up to an isotopy of the ambient plane.
Received: 26.12.2002
Russian version:
Matematicheskii Sbornik, 2003, Volume 194, Number 9, Pages 31–62
DOI: https://doi.org/10.4213/sm766
Bibliographic databases:
UDC: 515.1
MSC: 57M25, 57M27, 57M99
Language: English
Original paper language: Russian
Citation: A. B. Merkov, “Vassiliev invariants classify plane curves and doodles”, Sb. Math., 194:9 (2003), 1301–1330
Citation in format AMSBIB
\Bibitem{Mer03}
\by A.~B.~Merkov
\paper Vassiliev invariants classify plane curves and doodles
\jour Sb. Math.
\yr 2003
\vol 194
\issue 9
\pages 1301--1330
\mathnet{http://mi.mathnet.ru//eng/sm766}
\crossref{https://doi.org/10.1070/SM2003v194n09ABEH000766}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2037502}
\zmath{https://zbmath.org/?q=an:1062.57017}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000188170200002}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-0742271113}
Linking options:
  • https://www.mathnet.ru/eng/sm766
  • https://doi.org/10.1070/SM2003v194n09ABEH000766
  • https://www.mathnet.ru/eng/sm/v194/i9/p31
  • This publication is cited in the following 7 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник - 1992–2005 Sbornik: Mathematics
    Statistics & downloads:
    Abstract page:543
    Russian version PDF:301
    English version PDF:15
    References:63
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024