Sbornik: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sbornik: Mathematics, 2011, Volume 202, Issue 1, Pages 101–126
DOI: https://doi.org/10.1070/SM2011v202n01ABEH004139
(Mi sm7651)
 

This article is cited in 15 scientific papers (total in 15 papers)

Invariant functions for the Lyapunov exponents of random matrices

V. Yu. Protasov

M. V. Lomonosov Moscow State University, Faculty of Mechanics and Mathematics
References:
Abstract: A new approach to the study of Lyapunov exponents of random matrices is presented. We prove that any family of nonnegative $(d\times d)$-matrices has a continuous concave invariant functional on $\mathbb R^d_+$. Under some standard assumptions on the matrices, this functional is strictly positive, and the coefficient corresponding to it is equal to the largest Lyapunov exponent. As a corollary we obtain asymptotics for the expected value of the logarithm of norms of matrix products and of their spectral radii. Another corollary gives new upper and lower bounds for the Lyapunov exponent, and an algorithm for computing it for families of nonnegative matrices. We consider possible extensions of our results to general nonnegative matrix families and present several applications and examples.
Bibliography: 29 titles.
Keywords: random matrices, Lyapunov exponents, invariant functions, concave homogeneous functionals, fixed point, asymptotics.
Received: 11.11.2009
Bibliographic databases:
Document Type: Article
UDC: 517.98+519.2
MSC: Primary 60H25; Secondary 15A60
Language: English
Original paper language: Russian
Citation: V. Yu. Protasov, “Invariant functions for the Lyapunov exponents of random matrices”, Sb. Math., 202:1 (2011), 101–126
Citation in format AMSBIB
\Bibitem{Pro11}
\by V.~Yu.~Protasov
\paper Invariant functions for the Lyapunov exponents of random matrices
\jour Sb. Math.
\yr 2011
\vol 202
\issue 1
\pages 101--126
\mathnet{http://mi.mathnet.ru//eng/sm7651}
\crossref{https://doi.org/10.1070/SM2011v202n01ABEH004139}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2796828}
\zmath{https://zbmath.org/?q=an:1239.60004}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2011SbMat.202..101P}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000290670400005}
\elib{https://elibrary.ru/item.asp?id=19066237}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-79955638071}
Linking options:
  • https://www.mathnet.ru/eng/sm7651
  • https://doi.org/10.1070/SM2011v202n01ABEH004139
  • https://www.mathnet.ru/eng/sm/v202/i1/p105
  • This publication is cited in the following 15 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник Sbornik: Mathematics
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025