|
This article is cited in 16 scientific papers (total in 16 papers)
On Sasakian hypersurfaces in 6-dimensional Hermitian
submanifolds of the Cayley algebra
M. B. Banaru Smolensk Humanitarian University
Abstract:
A criterion for the minimality of a Sasakian
hypersurface in a 6-dimensional Hermitian submanifold of the octave algebra is found. It is proved that the type number of a Sasakian hypersurface in a 6-dimensional Hermitian submanifold of the octave algebra is four or five. It is also proved that a Sasakian hypersurface in a 6-dimensional Hermitian submanifold of the Cayley algebra is minimal if and only if it is ruled.
Received: 04.07.2002
Citation:
M. B. Banaru, “On Sasakian hypersurfaces in 6-dimensional Hermitian
submanifolds of the Cayley algebra”, Mat. Sb., 194:8 (2003), 13–24; Sb. Math., 194:8 (2003), 1125–1136
Linking options:
https://www.mathnet.ru/eng/sm759https://doi.org/10.1070/SM2003v194n08ABEH000759 https://www.mathnet.ru/eng/sm/v194/i8/p13
|
Statistics & downloads: |
Abstract page: | 470 | Russian version PDF: | 185 | English version PDF: | 20 | References: | 79 | First page: | 1 |
|