Sbornik: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sbornik: Mathematics, 2010, Volume 201, Issue 5, Pages 693–733
DOI: https://doi.org/10.1070/SM2010v201n05ABEH004089
(Mi sm7574)
 

This article is cited in 93 scientific papers (total in 94 papers)

Parity in knot theory

V. O. Manturov

Peoples Friendship University of Russia
References:
Abstract: In this work we study knot theories with a parity property for crossings: every crossing is declared to be even or odd according to a certain preassigned rule. If this rule satisfies a set of simple axioms related to the Reidemeister moves, then certain simple invariants solving the minimality problem can be defined, and invariant maps on the set of knots can be constructed.
The most important example of a knot theory with parity is the theory of virtual knots. Using the parity property arising from Gauss diagrams we show that even a gross simplification of the theory of virtual knots, namely, the theory of free knots, admits simple and highly nontrivial invariants. This gives a solution to a problem of Turaev, who conjectured that all free knots are trivial.
In this work we show that free knots are generally not invertible, and provide invariants which detect the invertibility of free knots.
The passage to ordinary virtual knots allows us to strengthen known invariants (such as the Kauffman bracket) using parity considerations.
We also discuss other examples of knot theories with parity.
Bibliography: 27 items.
Keywords: knot, link, graph, atom, virtual knot, parity, Kauffman bracket, minimality.
Received: 07.05.2009 and 21.01.2010
Bibliographic databases:
Document Type: Article
UDC: 515.162+519.1
MSC: 57M25, 57M27
Language: English
Original paper language: Russian
Citation: V. O. Manturov, “Parity in knot theory”, Sb. Math., 201:5 (2010), 693–733
Citation in format AMSBIB
\Bibitem{Man10}
\by V.~O.~Manturov
\paper Parity in knot theory
\jour Sb. Math.
\yr 2010
\vol 201
\issue 5
\pages 693--733
\mathnet{http://mi.mathnet.ru//eng/sm7574}
\crossref{https://doi.org/10.1070/SM2010v201n05ABEH004089}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2681114}
\zmath{https://zbmath.org/?q=an:1210.57010}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2010SbMat.201..693M}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000281540600005}
\elib{https://elibrary.ru/item.asp?id=19066205}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-77958541310}
Linking options:
  • https://www.mathnet.ru/eng/sm7574
  • https://doi.org/10.1070/SM2010v201n05ABEH004089
  • https://www.mathnet.ru/eng/sm/v201/i5/p65
  • This publication is cited in the following 94 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник Sbornik: Mathematics
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024