Sbornik: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sbornik: Mathematics, 2003, Volume 194, Issue 7, Pages 1055–1068
DOI: https://doi.org/10.1070/SM2003v194n07ABEH000754
(Mi sm754)
 

This article is cited in 3 scientific papers (total in 3 papers)

The property of compactness of the quasi-linearly perturbed harmonic-map equation

G. Yu. Kokarev

M. V. Lomonosov Moscow State University
References:
Abstract: For maps $u\colon M\to M'$ of closed Riemannian manifolds a study is made of the quasi-linearly perturbed harmonic-map equation
$$ \tau(u)(x)=\mathsf G(x,u(x))\cdot du(x)+\mathsf g(x,u(x)), \qquad x\in M. $$
In the case of a non-positively curved manifold $M'$ and a small linear part of the perturbation $\mathsf G$ it is proved that the space of classical solutions in a fixed homotopy class is compact. The proof is based on a uniform estimate for the norm of the differential of a solution of the perturbed equation in terms of its energy and the $C^1$-norms of $\mathsf G$ and $\mathsf g$. The crux of this analysis is an inequality called the monotonicity property.
Received: 24.12.2002
Bibliographic databases:
UDC: 517.57
MSC: Primary 53C43, 53C21, 35B20; Secondary 35J05, 58E20
Language: English
Original paper language: Russian
Citation: G. Yu. Kokarev, “The property of compactness of the quasi-linearly perturbed harmonic-map equation”, Sb. Math., 194:7 (2003), 1055–1068
Citation in format AMSBIB
\Bibitem{Kok03}
\by G.~Yu.~Kokarev
\paper The property of compactness of the~quasi-linearly perturbed
harmonic-map equation
\jour Sb. Math.
\yr 2003
\vol 194
\issue 7
\pages 1055--1068
\mathnet{http://mi.mathnet.ru//eng/sm754}
\crossref{https://doi.org/10.1070/SM2003v194n07ABEH000754}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2020380}
\zmath{https://zbmath.org/?q=an:1071.58014}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000186261600006}
\elib{https://elibrary.ru/item.asp?id=14536081}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-0344197652}
Linking options:
  • https://www.mathnet.ru/eng/sm754
  • https://doi.org/10.1070/SM2003v194n07ABEH000754
  • https://www.mathnet.ru/eng/sm/v194/i7/p105
  • This publication is cited in the following 3 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник - 1992–2005 Sbornik: Mathematics
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024