\Bibitem{Rau09}
\by N.~A.~Rautian
\paper On the boundedness of a~class of fractional type integral operators
\jour Sb. Math.
\yr 2009
\vol 200
\issue 12
\pages 1807--1832
\mathnet{http://mi.mathnet.ru/eng/sm7488}
\crossref{https://doi.org/10.1070/SM2009v200n12ABEH004060}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2604538}
\zmath{https://zbmath.org/?q=an:1193.26005}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2009SbMat.200.1807R}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000275236600010}
\elib{https://elibrary.ru/item.asp?id=19066102}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-77149125894}
Linking options:
https://www.mathnet.ru/eng/sm7488
https://doi.org/10.1070/SM2009v200n12ABEH004060
https://www.mathnet.ru/eng/sm/v200/i12/p81
This publication is cited in the following 5 articles:
V. V. Vlasov, N. A. Rautian, “Investigation of Integro-Differential Equations by Methods of Spectral Theory”, J Math Sci, 278:1 (2024), 55
O. V. Besov, “Conditions for Embeddings of Sobolev Spaces on a Domain with Anisotropic Peak”, Proc. Steklov Inst. Math., 319 (2022), 43–55
A. Kalybay, R. Oinarov, “Boundedness of Riemann–Liouville operator from weighted Sobolev space to weighted Lebesgue space”, Eurasian Math. J., 12:1 (2021), 39–48
V. V. Vlasov, N. A. Rautian, “Issledovanie integrodifferentsialnykh uravnenii metodami spektralnoi teorii”, Posvyaschaetsya pamyati professora N.D. Kopachevskogo, SMFN, 67, no. 2, Rossiiskii universitet druzhby narodov, M., 2021, 255–284
R. Oinarov, “Boundedness and compactness of a class of convolution integral operators of fractional integration type”, Proc. Steklov Inst. Math., 293 (2016), 255–271