Sbornik: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sbornik: Mathematics, 2009, Volume 200, Issue 12, Pages 1807–1832
DOI: https://doi.org/10.1070/SM2009v200n12ABEH004060
(Mi sm7488)
 

This article is cited in 5 scientific papers (total in 5 papers)

On the boundedness of a class of fractional type integral operators

N. A. Rautian

Plekhanov Russian State Academy of Economics
References:
Abstract: Criteria for boundedness of fractional type integral operators in weighted Lebesgue spaces are presented.
Bibliography: 15 items.
Keywords: fractional type integral operators, weighted Lebesgue spaces.
Received: 18.11.2008 and 03.07.2009
Bibliographic databases:
UDC: 517.51
MSC: 26A33, 45P05, 47G10
Language: English
Original paper language: Russian
Citation: N. A. Rautian, “On the boundedness of a class of fractional type integral operators”, Sb. Math., 200:12 (2009), 1807–1832
Citation in format AMSBIB
\Bibitem{Rau09}
\by N.~A.~Rautian
\paper On the boundedness of a~class of fractional type integral operators
\jour Sb. Math.
\yr 2009
\vol 200
\issue 12
\pages 1807--1832
\mathnet{http://mi.mathnet.ru/eng/sm7488}
\crossref{https://doi.org/10.1070/SM2009v200n12ABEH004060}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2604538}
\zmath{https://zbmath.org/?q=an:1193.26005}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2009SbMat.200.1807R}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000275236600010}
\elib{https://elibrary.ru/item.asp?id=19066102}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-77149125894}
Linking options:
  • https://www.mathnet.ru/eng/sm7488
  • https://doi.org/10.1070/SM2009v200n12ABEH004060
  • https://www.mathnet.ru/eng/sm/v200/i12/p81
  • This publication is cited in the following 5 articles:
    1. V. V. Vlasov, N. A. Rautian, “Investigation of Integro-Differential Equations by Methods of Spectral Theory”, J Math Sci, 278:1 (2024), 55  crossref
    2. O. V. Besov, “Conditions for Embeddings of Sobolev Spaces on a Domain with Anisotropic Peak”, Proc. Steklov Inst. Math., 319 (2022), 43–55  mathnet  crossref  crossref
    3. A. Kalybay, R. Oinarov, “Boundedness of Riemann–Liouville operator from weighted Sobolev space to weighted Lebesgue space”, Eurasian Math. J., 12:1 (2021), 39–48  mathnet  crossref
    4. V. V. Vlasov, N. A. Rautian, “Issledovanie integrodifferentsialnykh uravnenii metodami spektralnoi teorii”, Posvyaschaetsya pamyati professora N.D. Kopachevskogo, SMFN, 67, no. 2, Rossiiskii universitet druzhby narodov, M., 2021, 255–284  mathnet  crossref
    5. R. Oinarov, “Boundedness and compactness of a class of convolution integral operators of fractional integration type”, Proc. Steklov Inst. Math., 293 (2016), 255–271  mathnet  crossref  crossref  mathscinet  isi  elib
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник Sbornik: Mathematics
    Statistics & downloads:
    Abstract page:594
    Russian version PDF:213
    English version PDF:28
    References:105
    First page:10
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025