Abstract:
It is a noticeable feature of elasticity problems on periodic structures
depending on two geometric parameters that their homogenization has
a non-classical nature. The most complicated kind of this non-classical
homogenization occurs on structures of so-called critical thickness. Homogenization
for periodic networks of this type is presented in the paper.
Citation:
V. V. Zhikov, S. E. Pastukhova, “Homogenization for elasticity problems on periodic networks
of critical thickness”, Sb. Math., 194:5 (2003), 697–732
\Bibitem{ZhiPas03}
\by V.~V.~Zhikov, S.~E.~Pastukhova
\paper Homogenization for elasticity problems on periodic networks
of critical thickness
\jour Sb. Math.
\yr 2003
\vol 194
\issue 5
\pages 697--732
\mathnet{http://mi.mathnet.ru/eng/sm735}
\crossref{https://doi.org/10.1070/SM2003v194n05ABEH000735}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1992110}
\zmath{https://zbmath.org/?q=an:1077.35023}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000185858900003}
\elib{https://elibrary.ru/item.asp?id=13435608}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-0142086985}
Linking options:
https://www.mathnet.ru/eng/sm735
https://doi.org/10.1070/SM2003v194n05ABEH000735
https://www.mathnet.ru/eng/sm/v194/i5/p61
This publication is cited in the following 45 articles:
S. A. Nazarov, A. S. Slutskii, “Homogenization of the Scalar Boundary Value Problem in a Thin Periodically Broken Cylinder”, Sib Math J, 65:2 (2024), 363
S. A. Nazarov, A. S. Slutskii, “Osrednenie skalyarnoi kraevoi zadachi v tonkom periodicheski izlomannom tsilindre”, Sib. matem. zhurn., 65:2 (2024), 374–394
Grigory Panasenko, Konstantin Pileckas, Advances in Mathematical Fluid Mechanics, Multiscale Analysis of Viscous Flows in Thin Tube Structures, 2024, 473
S. A. Nazarov, “On the one-dimensional asymptotic models of thin Neumann lattices”, Siberian Math. J., 64:2 (2023), 356–373
Alexander G. Kolpakov, Sergey I. Rakin, Advanced Structured Materials, 170, Sixty Shades of Generalized Continua, 2023, 401
Irina V. Fankina, Alexey I. Furtsev, Evgeny M. Rudoy, Sergey A. Sazhenkov, “The homogenized quasi-static model of a thermoelastic composite stitched with reinforcing threads”, Journal of Computational and Applied Mathematics, 434 (2023), 115346
Georges Griso, Larysa Khilkova, Julia Orlik, “Asymptotic Behavior of 3D Unstable Structures Made of Beams”, J Elast, 150:1 (2022), 7
Griso G. Khilkova L. Orlik J. Sivak O., “Asymptotic Behavior of Stable Structures Made of Beams”, J. Elast., 143:2 (2021), 239–299
Braides A., Piat V.Ch., “Homogenization of Networks in Domains With Oscillating Boundaries”, Appl. Anal., 98:1-2, SI (2019), 45–63
Cherednichenko K.D. Evans J.A., “Homogenisation of Thin Periodic Frameworks With High-Contrast Inclusions”, J. Math. Anal. Appl., 473:2 (2019), 658–679
A. V. Klevtsovs'kyi, “Asymptotic Expansion of the Solution of a Linear Parabolic Boundary-Value Problem in a Thin Starlike Joint”, J Math Sci, 238:3 (2019), 271
S. A. Nazarov, “Waves in a Plane Rectangular Lattice of Thin Elastic Waveguides”, J Math Sci, 242:2 (2019), 227
Houssam Abdoul-Anziz, Pierre Seppecher, “Homogenization of periodic graph-based elastic structures”, Journal de l'École polytechnique — Mathématiques, 5 (2018), 259
V. G. Maz'ya, A. B. Movchan, “Meso-Scale Approximations of Fields Around Clusters of Defects”, J Math Sci, 232:4 (2018), 446
Cherednichenko K.D. Kiselev A.V., “Norm-Resolvent Convergence of One-Dimensional High-Contrast Periodic Problems to a Kronig–Penney Dipole-Type Model”, Commun. Math. Phys., 349:2 (2017), 441–480
Bellieud M., “Homogenization of Stratified Elastic Composites With High Contrast”, SIAM J. Math. Anal., 49:4 (2017), 2615–2665
Mel'nyk T.A., Klevtsovskiy A.V., “Asymptotic Approximation For the Solution to a Semi-Linear Elliptic Problem in a Thin Aneurysm-Type Domain”, Open Math., 15 (2017), 1351–1370
Orlik J. Andra H. Argatov I. Staub S., “Does the Weaving and Knitting Pattern of a Fabric Determine Its Relaxation Time?”, Q. J. Mech. Appl. Math., 70:4 (2017), 337–361