Sbornik: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sbornik: Mathematics, 2003, Volume 194, Issue 4, Pages 515–540
DOI: https://doi.org/10.1070/SM2003v194n04ABEH000727
(Mi sm727)
 

This article is cited in 22 scientific papers (total in 22 papers)

Rayleigh triangles and non-matrix interpolation of matrix beta integrals

Yu. A. Neretin

Institute for Theoretical and Experimental Physics (Russian Federation State Scientific Center)
References:
Abstract: A Rayleigh triangle of size $n$ is a set of $n(n+1)/2$ real numbers $\lambda_{kl}$, where $1\leqslant l\leqslant k\leqslant n$, which are decreasing as $k$ increases for fixed $k$ and are increasing as $k$ increases for fixed $k-l$. We construct a family of beta integrals over the space of Rayleigh triangles which interpolate matrix integrals of the types of Siegel, Hua Loo Keng, and Gindikin with respect to the dimension of the ground field ($\mathbb R$$\mathbb C$, or the quaternions $\mathbb H$). We also interpolate the Hua–Pickrell measures on the inverse limits of the symmetric spaces $\operatorname U(n)$, $\operatorname U(n)/\operatorname O(n)$, $\operatorname U(2n)/\operatorname{Sp}(n)$.
Our family of integrals also includes the Selberg integral.
Received: 08.07.2002
Bibliographic databases:
UDC: 519.46
MSC: Primary 22E30, 43A85; Secondary 33C67, 43A80, 44A15
Language: English
Original paper language: Russian
Citation: Yu. A. Neretin, “Rayleigh triangles and non-matrix interpolation of matrix beta integrals”, Sb. Math., 194:4 (2003), 515–540
Citation in format AMSBIB
\Bibitem{Ner03}
\by Yu.~A.~Neretin
\paper Rayleigh triangles and non-matrix interpolation of matrix beta integrals
\jour Sb. Math.
\yr 2003
\vol 194
\issue 4
\pages 515--540
\mathnet{http://mi.mathnet.ru//eng/sm727}
\crossref{https://doi.org/10.1070/SM2003v194n04ABEH000727}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1991916}
\zmath{https://zbmath.org/?q=an:1090.33007}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000184089700010}
\elib{https://elibrary.ru/item.asp?id=13444591}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-0038504809}
Linking options:
  • https://www.mathnet.ru/eng/sm727
  • https://doi.org/10.1070/SM2003v194n04ABEH000727
  • https://www.mathnet.ru/eng/sm/v194/i4/p49
  • This publication is cited in the following 22 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник - 1992–2005 Sbornik: Mathematics
    Statistics & downloads:
    Abstract page:943
    Russian version PDF:247
    English version PDF:35
    References:75
    First page:3
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024