Sbornik: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sbornik: Mathematics, 2003, Volume 194, Issue 3, Pages 311–331
DOI: https://doi.org/10.1070/SM2003v194n03ABEH000718
(Mi sm718)
 

This article is cited in 18 scientific papers (total in 18 papers)

Inscribed polygons and Heron polynomials

V. V. Varfolomeev

Moscow State Institute of Radio-Engineering, Electronics and Automation (Technical University)
References:
Abstract: Heron's well-known formula expressing the area of a triangle in terms of the lengths of its sides is generalized in the following sense to polygons inscribed in a circle: it is proved that the area is an algebraic function of the lengths of the edges of the polygon. Similar results are proved for the diagonals and the radius of the circumscribed circle. The resulting algebraic equations are studied and elementary geometric applications of the algebraic results obtained are presented.
Received: 04.03.2002
Russian version:
Matematicheskii Sbornik, 2003, Volume 194, Number 3, Pages 3–24
DOI: https://doi.org/10.4213/sm718
Bibliographic databases:
UDC: 513.7
MSC: 51M25, 52A10, 52A38
Language: English
Original paper language: Russian
Citation: V. V. Varfolomeev, “Inscribed polygons and Heron polynomials”, Mat. Sb., 194:3 (2003), 3–24; Sb. Math., 194:3 (2003), 311–331
Citation in format AMSBIB
\Bibitem{Var03}
\by V.~V.~Varfolomeev
\paper Inscribed polygons and Heron polynomials
\jour Mat. Sb.
\yr 2003
\vol 194
\issue 3
\pages 3--24
\mathnet{http://mi.mathnet.ru/sm718}
\crossref{https://doi.org/10.4213/sm718}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1992154}
\zmath{https://zbmath.org/?q=an:1067.51013}
\elib{https://elibrary.ru/item.asp?id=13442865}
\transl
\jour Sb. Math.
\yr 2003
\vol 194
\issue 3
\pages 311--331
\crossref{https://doi.org/10.1070/SM2003v194n03ABEH000718}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000184089700001}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-0037828513}
Linking options:
  • https://www.mathnet.ru/eng/sm718
  • https://doi.org/10.1070/SM2003v194n03ABEH000718
  • https://www.mathnet.ru/eng/sm/v194/i3/p3
  • This publication is cited in the following 18 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник - 1992–2005 Sbornik: Mathematics
    Statistics & downloads:
    Abstract page:1987
    Russian version PDF:783
    English version PDF:40
    References:116
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024