Abstract:
A non-associative analogue of the Banach principle is developed for
measurable elements with respect to a JBW-algebra.
On the basis of it an individual ergodic theorem is proved for subsequences
generated by means of uniform sequences.
Citation:
A. K. Karimov, F. M. Mukhamedov, “An individual ergodic theorem with respect to a uniform
sequence and the Banach principle in Jordan algebras”, Sb. Math., 194:2 (2003), 237–250
\Bibitem{KarMuk03}
\by A.~K.~Karimov, F.~M.~Mukhamedov
\paper An individual ergodic theorem with respect to a~uniform
sequence and the Banach principle in~Jordan algebras
\jour Sb. Math.
\yr 2003
\vol 194
\issue 2
\pages 237--250
\mathnet{http://mi.mathnet.ru/eng/sm714}
\crossref{https://doi.org/10.1070/SM2003v194n02ABEH000714}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1992150}
\zmath{https://zbmath.org/?q=an:1060.46036}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000182636900012}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-0038750661}
Linking options:
https://www.mathnet.ru/eng/sm714
https://doi.org/10.1070/SM2003v194n02ABEH000714
https://www.mathnet.ru/eng/sm/v194/i2/p73
This publication is cited in the following 4 articles:
Farrukh Mukhamedov, “On Dobrushin Ergodicity Coefficient and weak ergodicity of Markov Chains on Jordan Algebras”, J. Phys.: Conf. Ser, 435 (2013), 012002
Karimov A., Mukhamedov F., “Martingale Convergence Theorems in JW-Algebras”, Bulletin of the Malaysian Mathematical Sciences Society, 33:3 (2010), 405–410
Karimov A., Mukhamedov F., “On Limit Theorems in Jw-Algebras”, Prob. Math. Stat.., 30:1 (2010), 153–165
A. K. Karimov, “Convergences in JW-algebras and in their enveloping von Neumann algebras”, Siberian Adv. Math., 18:3 (2008), 176–184