Sbornik: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sbornik: Mathematics, 2002, Volume 193, Issue 9, Pages 1349–1380
DOI: https://doi.org/10.1070/SM2002v193n09ABEH000681
(Mi sm681)
 

This article is cited in 3 scientific papers (total in 3 papers)

Stabilization of solutions of the first mixed problem for the wave equation in domains with non-compact boundaries

A. V. Filinovskii

M. V. Lomonosov Moscow State University
References:
Abstract: In this paper we study the rate of decay, for large values of time, of the local energy of solutions of the first mixed problem for the wave equation in unbounded domains $\Omega\subset\mathbb R^n$, $n\geqslant 2$, with smooth non-compact boundaries. Under the assumption that the boundary surface satisfies a condition generalizing the condition of star-shapedness with respect to the origin we establish a power estimate of the rate of decay of the local energy as $t\to\infty$.
The proof is based on uniform estimates in the half-plane $\{\operatorname{Im} k>0\}$ of solutions of the corresponding spectral problem– the first boundary-value problem for the Helmholtz equation–obtained in the paper.
Received: 23.07.2001
Russian version:
Matematicheskii Sbornik, 2002, Volume 193, Number 9, Pages 107–138
DOI: https://doi.org/10.4213/sm681
Bibliographic databases:
UDC: 517.956.3
MSC: Primary 35L05; Secondary 35L20, 35B40
Language: English
Original paper language: Russian
Citation: A. V. Filinovskii, “Stabilization of solutions of the first mixed problem for the wave equation in domains with non-compact boundaries”, Mat. Sb., 193:9 (2002), 107–138; Sb. Math., 193:9 (2002), 1349–1380
Citation in format AMSBIB
\Bibitem{Fil02}
\by A.~V.~Filinovskii
\paper Stabilization of solutions of the~first mixed problem for the~wave
equation in domains with non-compact boundaries
\jour Mat. Sb.
\yr 2002
\vol 193
\issue 9
\pages 107--138
\mathnet{http://mi.mathnet.ru/sm681}
\crossref{https://doi.org/10.4213/sm681}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1936859}
\zmath{https://zbmath.org/?q=an:1065.35170}
\elib{https://elibrary.ru/item.asp?id=14352341}
\transl
\jour Sb. Math.
\yr 2002
\vol 193
\issue 9
\pages 1349--1380
\crossref{https://doi.org/10.1070/SM2002v193n09ABEH000681}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000180375800005}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-0036767670}
Linking options:
  • https://www.mathnet.ru/eng/sm681
  • https://doi.org/10.1070/SM2002v193n09ABEH000681
  • https://www.mathnet.ru/eng/sm/v193/i9/p107
  • This publication is cited in the following 3 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник - 1992–2005 Sbornik: Mathematics
    Statistics & downloads:
    Abstract page:394
    Russian version PDF:205
    English version PDF:11
    References:60
    First page:2
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024