Sbornik: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sbornik: Mathematics, 2002, Volume 193, Issue 7, Pages 945–976
DOI: https://doi.org/10.1070/SM2002v193n07ABEH000665
(Mi sm665)
 

This article is cited in 62 scientific papers (total in 63 papers)

Uniqueness of solutions of elliptic equations and uniqueness of invariant measures of diffusions

V. I. Bogacheva, M. Röcknerb, W. Stannatb

a M. V. Lomonosov Moscow State University
b Bielefeld University
References:
Abstract: Let $M$ be a complete connected Riemannian manifold of dimension $d$ and let $L$ be a second order elliptic operator on $M$ that has a representation $L=a^{ij}\partial_{x_i}\partial_{x_j}+b^i\partial_{x_i}$ in local coordinates, where $a^{ij}\in H^{p,1}_{\mathrm{loc}}$, $b^i\in L^p_{\text{loc}}$ for some $p>d$, and the matrix $(a^{ij})$ is non-singular. The aim of the paper is the study of the uniqueness of a solution of the elliptic equation $L^*\mu=0$ for probability measures $\mu$, which is understood in the weak sense: $\displaystyle\int L\varphi f\,d\mu=0$ for all $\varphi\in C_0^\infty(M)$. In addition, the uniqueness of invariant probability measures for the corresponding semigroups $(T_t^\mu)_{t\geqslant 0}$ generated by the operator $L$ is investigated. It is proved that if a probability measure $\mu$ on $M$ satisfies the equation $L^*\mu=0$ and $(L-I)\bigl(C^\infty_0(M)\bigr)$ is dense in $L^1(M,\mu)$, then $\mu$ is a unique solution of this equation in the class of probability measures. Examples are presented (even with $a^{ij}=\delta^{ij}$ and smooth $b^i$) in which the equation $L^*\mu=0$ has more than one solution in the class of probability measures. Finally, it is shown that if $p>d+2$, then the semigroup $(T_t)_{t\geqslant 0}$ generated by $L$ has at most one invariant probability measure.
Received: 08.01.2002
Bibliographic databases:
UDC: 517.956+517.98+519.2
MSC: 58J05, 47F05
Language: English
Original paper language: Russian
Citation: V. I. Bogachev, M. Röckner, W. Stannat, “Uniqueness of solutions of elliptic equations and uniqueness of invariant measures of diffusions”, Sb. Math., 193:7 (2002), 945–976
Citation in format AMSBIB
\Bibitem{BogRocSta02}
\by V.~I.~Bogachev, M.~R\"ockner, W.~Stannat
\paper Uniqueness of solutions of elliptic equations and
uniqueness of invariant measures of diffusions
\jour Sb. Math.
\yr 2002
\vol 193
\issue 7
\pages 945--976
\mathnet{http://mi.mathnet.ru//eng/sm665}
\crossref{https://doi.org/10.1070/SM2002v193n07ABEH000665}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1936848}
\zmath{https://zbmath.org/?q=an:1055.58009}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000178959400001}
\elib{https://elibrary.ru/item.asp?id=14363201}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-0036662252}
Linking options:
  • https://www.mathnet.ru/eng/sm665
  • https://doi.org/10.1070/SM2002v193n07ABEH000665
  • https://www.mathnet.ru/eng/sm/v193/i7/p3
  • This publication is cited in the following 63 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник - 1992–2005 Sbornik: Mathematics
    Statistics & downloads:
    Abstract page:986
    Russian version PDF:361
    English version PDF:34
    References:78
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024