Sbornik: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sbornik: Mathematics, 2002, Volume 193, Issue 6, Pages 847–867
DOI: https://doi.org/10.1070/SM2002v193n06ABEH000660
(Mi sm660)
 

This article is cited in 14 scientific papers (total in 14 papers)

Conservative systems of integral convolution equations on the half-line and the entire line

N. B. Engibaryan

Byurakan Astrophysical Observatory, National Academy of Sciences of Armenia
References:
Abstract: The following system of integral convolution equations is considered:
$$ f(x)=g(x)+\int_a^\infty K(x-t)f(t)\,dt, \qquad -\infty\leqslant a<\infty, $$
where the $(m\times m)$-matrix-valued function $K$ satisfies the conditions of conservativeness
$$ K_{ij}\in L_1(\mathbb R), \quad K_{ij}\geqslant 0, \qquad A\equiv\int_{-\infty}^\infty K(x)\,dx\in P_N, \qquad r(A)=1. $$
Here $P_N$ is the class of non-negative indecomposable $(m\times m)$-matrices and $r(A)$ is the spectral radius of the matrix $A$. For $a=0$ the equation in question is a conservative system of Wiener–Hopf integral equations. For $a=-\infty$ this is the multidimensional renewal equation on the entire line. Questions of the solubility of the inhomogeneous and the homogeneous equations, asymptotic and other properties of solutions are considered.
The method of non-linear factorization equations is applied and developed in combination with new results in multidimensional renewal theory.
Received: 11.03.2001
Bibliographic databases:
UDC: 517.9+519.24
MSC: 45B05, 45D05, 47G10
Language: English
Original paper language: Russian
Citation: N. B. Engibaryan, “Conservative systems of integral convolution equations on the half-line and the entire line”, Sb. Math., 193:6 (2002), 847–867
Citation in format AMSBIB
\Bibitem{Eng02}
\by N.~B.~Engibaryan
\paper Conservative systems of integral convolution equations
on the~half-line and the~entire line
\jour Sb. Math.
\yr 2002
\vol 193
\issue 6
\pages 847--867
\mathnet{http://mi.mathnet.ru//eng/sm660}
\crossref{https://doi.org/10.1070/SM2002v193n06ABEH000660}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1957953}
\zmath{https://zbmath.org/?q=an:1062.45002}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000178245000013}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-0036621961}
Linking options:
  • https://www.mathnet.ru/eng/sm660
  • https://doi.org/10.1070/SM2002v193n06ABEH000660
  • https://www.mathnet.ru/eng/sm/v193/i6/p61
  • This publication is cited in the following 14 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник - 1992–2005 Sbornik: Mathematics
    Statistics & downloads:
    Abstract page:741
    Russian version PDF:277
    English version PDF:19
    References:110
    First page:2
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024