Sbornik: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sbornik: Mathematics, 2002, Volume 193, Issue 4, Pages 559–584
DOI: https://doi.org/10.1070/SM2002v193n04ABEH000645
(Mi sm645)
 

This article is cited in 1 scientific paper (total in 1 paper)

Spectral properties of two classes of periodic difference operators

A. A. Oblomkovab

a M. V. Lomonosov Moscow State University
b Independent University of Moscow
References:
Abstract: A study is made of the iso-energetic spectral problem for two classes of multidimensional periodic difference operators. The first class of operators is defined on a regular simplicial lattice. The second class is defined on a standard rectangular lattice and is the difference analogue of a multidimensional Schrödinger operator. The varieties arising in the direct spectral problem are described, along with the divisor of an eigenfunction, defined on the spectral variety, of the corresponding operator. Multidimensional analogues are given for the Veselov–Novikov correspondences connecting the divisors of the eigenfunction with the canonical divisor of the spectral variety. Also, a method is proposed for solving the inverse spectral problem in terms of $\theta$-functions of curves lying “at infinity” on the spectral variety.
Received: 18.04.2001
Russian version:
Matematicheskii Sbornik, 2002, Volume 193, Number 4, Pages 87–112
DOI: https://doi.org/10.4213/sm645
Bibliographic databases:
UDC: 517.958
MSC: Primary 47B39; Secondary 39A70, 47A40, 35P05, 35J10, 35R30
Language: English
Original paper language: Russian
Citation: A. A. Oblomkov, “Spectral properties of two classes of periodic difference operators”, Mat. Sb., 193:4 (2002), 87–112; Sb. Math., 193:4 (2002), 559–584
Citation in format AMSBIB
\Bibitem{Obl02}
\by A.~A.~Oblomkov
\paper Spectral properties of two classes of periodic difference operators
\jour Mat. Sb.
\yr 2002
\vol 193
\issue 4
\pages 87--112
\mathnet{http://mi.mathnet.ru/sm645}
\crossref{https://doi.org/10.4213/sm645}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1918889}
\zmath{https://zbmath.org/?q=an:1036.47020}
\elib{https://elibrary.ru/item.asp?id=13398551}
\transl
\jour Sb. Math.
\yr 2002
\vol 193
\issue 4
\pages 559--584
\crossref{https://doi.org/10.1070/SM2002v193n04ABEH000645}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000177130300014}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-0036054505}
Linking options:
  • https://www.mathnet.ru/eng/sm645
  • https://doi.org/10.1070/SM2002v193n04ABEH000645
  • https://www.mathnet.ru/eng/sm/v193/i4/p87
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник - 1992–2005 Sbornik: Mathematics
    Statistics & downloads:
    Abstract page:345
    Russian version PDF:165
    English version PDF:10
    References:56
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024