Sbornik: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sbornik: Mathematics, 2009, Volume 200, Issue 8, Pages 1149–1164
DOI: https://doi.org/10.1070/SM2009v200n08ABEH004032
(Mi sm6383)
 

This article is cited in 3 scientific papers (total in 3 papers)

Invariants of Lie algebras representable as semidirect sums with a commutative ideal

A. S. Vorontsov

M. V. Lomonosov Moscow State University, Faculty of Mechanics and Mathematics
References:
Abstract: Explicit formulae for invariants of the coadjoint representation are presented for Lie algebras that are semidirect sums of a classical semisimple Lie algebra with a commutative ideal with respect to a representation of minimal dimension or to a $k$th tensor power of such a representation. These formulae enable one to apply some known constructions of complete commutative families and to compare integrable systems obtained in this way. A completeness criterion for a family constructed by the method of subalgebra chains is suggested and a conjecture is formulated concerning the equivalence of the general Sadetov method and a modification of the method of shifting the argument, which was suggested earlier by Brailov.
Bibliography: 12 titles.
Keywords: semisimple Lie algebras, commutative ideal, invariants, dynamical systems.
Received: 19.06.2008 and 20.02.2009
Bibliographic databases:
UDC: 514.763.8
MSC: Primary 37J15; Secondary 37J35, 53D20
Language: English
Original paper language: Russian
Citation: A. S. Vorontsov, “Invariants of Lie algebras representable as semidirect sums with a commutative ideal”, Sb. Math., 200:8 (2009), 1149–1164
Citation in format AMSBIB
\Bibitem{Vor09}
\by A.~S.~Vorontsov
\paper Invariants of Lie algebras representable as semidirect sums with a~commutative ideal
\jour Sb. Math.
\yr 2009
\vol 200
\issue 8
\pages 1149--1164
\mathnet{http://mi.mathnet.ru//eng/sm6383}
\crossref{https://doi.org/10.1070/SM2009v200n08ABEH004032}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2573011}
\zmath{https://zbmath.org/?q=an:1192.37078}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2009SbMat.200.1149V}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000271676400008}
\elib{https://elibrary.ru/item.asp?id=19066147}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-72849134049}
Linking options:
  • https://www.mathnet.ru/eng/sm6383
  • https://doi.org/10.1070/SM2009v200n08ABEH004032
  • https://www.mathnet.ru/eng/sm/v200/i8/p45
  • This publication is cited in the following 3 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник Sbornik: Mathematics
    Statistics & downloads:
    Abstract page:551
    Russian version PDF:285
    English version PDF:18
    References:67
    First page:10
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024