Sbornik: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sbornik: Mathematics, 2001, Volume 192, Issue 11, Pages 1721–1740
DOI: https://doi.org/10.1070/SM2001v192n11ABEH000613
(Mi sm613)
 

This article is cited in 2 scientific papers (total in 2 papers)

A necessary condition for the uniform minimality of a system of exponentials in $L^p$ spaces on the line

A. M. Sedletskii

M. V. Lomonosov Moscow State University
References:
Abstract: A necessary condition for the uniform minimality of a system of weighted exponentials
$$ \exp(-i\lambda_nt-a|t|^\alpha), \qquad a>0, \quad \alpha >1, $$
is obtained in the spaces $L^p$ $(1\leqslant p<\infty)$ and $C_0$ on the real line and the half-line. This condition is stated in terms of the indicator of the entire function of order $\beta=\alpha/(\alpha-1)$ with zero set coinciding with the sequence $\lambda_n$. This condition is used to show that there are no bases among the known complete minimal systems of this form in the above-indicated spaces.
Received: 04.04.2001
Russian version:
Matematicheskii Sbornik, 2001, Volume 192, Number 11, Pages 137–156
DOI: https://doi.org/10.4213/sm613
Bibliographic databases:
UDC: 517.5
MSC: Primary 42C30; Secondary 30D20
Language: English
Original paper language: Russian
Citation: A. M. Sedletskii, “A necessary condition for the uniform minimality of a system of exponentials in $L^p$ spaces on the line”, Mat. Sb., 192:11 (2001), 137–156; Sb. Math., 192:11 (2001), 1721–1740
Citation in format AMSBIB
\Bibitem{Sed01}
\by A.~M.~Sedletskii
\paper A~necessary condition for the uniform minimality of a~system of exponentials in~$L^p$ spaces on the line
\jour Mat. Sb.
\yr 2001
\vol 192
\issue 11
\pages 137--156
\mathnet{http://mi.mathnet.ru/sm613}
\crossref{https://doi.org/10.4213/sm613}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1886374}
\zmath{https://zbmath.org/?q=an:1037.42033}
\transl
\jour Sb. Math.
\yr 2001
\vol 192
\issue 11
\pages 1721--1740
\crossref{https://doi.org/10.1070/SM2001v192n11ABEH000613}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000174857300007}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-0035528652}
Linking options:
  • https://www.mathnet.ru/eng/sm613
  • https://doi.org/10.1070/SM2001v192n11ABEH000613
  • https://www.mathnet.ru/eng/sm/v192/i11/p137
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник - 1992–2005 Sbornik: Mathematics
    Statistics & downloads:
    Abstract page:428
    Russian version PDF:183
    English version PDF:20
    References:65
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024