Loading [MathJax]/jax/output/CommonHTML/jax.js
Sbornik: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sbornik: Mathematics, 2001, Volume 192, Issue 11, Pages 1677–1704
DOI: https://doi.org/10.1070/SM2001v192n11ABEH000611
(Mi sm611)
 

This article is cited in 5 scientific papers (total in 5 papers)

Kahler structures on the tangent bundles of rank-one symmetric spaces

I. V. Mykytyuk

Lviv Polytechnic National University
References:
Abstract: For rank-one Riemannian symmetric spaces G/K, dimG/K3, with semisimple Lie groups G all G-invariant Kahler structures F on subdomains of the symplectic manifolds T(G/K) are constructed. It is shown that this class {F} of Kahler structures is stable under the reduction procedure. A Lie algebraic method of description of G-invariant Kahler structures on the tangent bundles of symmetric spaces G/K is presented. Related questions of the description of the Lie triple system of the space F4/Spin(9) in terms of its spinor structure are also discussed.
Received: 15.03.2001
Bibliographic databases:
UDC: 514.765.1+512.813.4
MSC: 32Q15, 37J15
Language: English
Original paper language: Russian
Citation: I. V. Mykytyuk, “Kahler structures on the tangent bundles of rank-one symmetric spaces”, Sb. Math., 192:11 (2001), 1677–1704
Citation in format AMSBIB
\Bibitem{Myk01}
\by I.~V.~Mykytyuk
\paper Kahler structures on the tangent bundles of rank-one symmetric spaces
\jour Sb. Math.
\yr 2001
\vol 192
\issue 11
\pages 1677--1704
\mathnet{http://mi.mathnet.ru/eng/sm611}
\crossref{https://doi.org/10.1070/SM2001v192n11ABEH000611}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1886372}
\zmath{https://zbmath.org/?q=an:1040.53069}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000174857300005}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-0035528648}
Linking options:
  • https://www.mathnet.ru/eng/sm611
  • https://doi.org/10.1070/SM2001v192n11ABEH000611
  • https://www.mathnet.ru/eng/sm/v192/i11/p93
  • This publication is cited in the following 5 articles:
    1. Wafaa Batat, P. M. Gadea, José A. Oubiña, Springer Proceedings in Mathematics & Statistics, 161, Geometry, Algebra and Applications: From Mechanics to Cryptography, 2016, 1  crossref
    2. I. V. Mykytyuk, “Classification of Ricci-flat metrics on the cotangent bundles of compact rank-one symmetric spaces”, Sb. Math., 202:2 (2011), 257–278  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib
    3. Castrillon Lopez M., Gadea P.M., Mykytyuk I.V., “The Canonical Eight-Form on Manifolds with Holonomy Group Spin(9)”, International Journal of Geometric Methods in Modern Physics, 7:7 (2010), 1159–1183  crossref  mathscinet  zmath  isi  scopus  scopus  scopus
    4. I. V. Mykytyuk, “Hypercomplex and hyper-Kählerian structures on tangent bundles of Hermitian symmetric spaces of rank one”, Russian Math. Surveys, 58:1 (2003), 185–186  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi
    5. I. V. Mykytyuk, “Invariant hyperkähler structures on the cotangent bundles of Hermitian symmetric spaces”, Sb. Math., 194:8 (2003), 1225–1250  mathnet  crossref  crossref  mathscinet  zmath  isi
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник - 1992–2005 Sbornik: Mathematics
    Statistics & downloads:
    Abstract page:415
    Russian version PDF:224
    English version PDF:18
    References:52
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025