Sbornik: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sbornik: Mathematics, 2001, Volume 192, Issue 9, Pages 1399–1416
DOI: https://doi.org/10.1070/SM2001v192n09ABEH000598
(Mi sm598)
 

This article is cited in 3 scientific papers (total in 3 papers)

Some generalizations of Macaulay's combinatorial theorem for residue rings

D. A. Shakin

M. V. Lomonosov Moscow State University
References:
Abstract: The problem of the characterization of the Hilbert functions of homogeneous ideals of a polynomial ring containing a fixed monomial ideal $I$ is considered. Macaulay's result for the polynomial ring is generalized to the case of residue rings modulo some monomial ideals. In particular, necessary and sufficient conditions on an ideal $I$ for Macaulay's theorem to hold are presented in two cases: when $I$ is an ideal of the polynomial ring in two variables and when $I$ is generated by a lexsegment. Macaulay's theorem is also proved for a wide variety of cases when $I$ is generated by monomials in the two largest variables in the lexicographic ordering. In addition, an equivalent formulation of Macaulay's theorem and conditions on the ideal $I$ required for a generalization of this theorem are given.
Received: 24.08.2000
Russian version:
Matematicheskii Sbornik, 2001, Volume 192, Number 9, Pages 143–160
DOI: https://doi.org/10.4213/sm598
Bibliographic databases:
UDC: 512.714
MSC: 13F15
Language: English
Original paper language: Russian
Citation: D. A. Shakin, “Some generalizations of Macaulay's combinatorial theorem for residue rings”, Mat. Sb., 192:9 (2001), 143–160; Sb. Math., 192:9 (2001), 1399–1416
Citation in format AMSBIB
\Bibitem{Sha01}
\by D.~A.~Shakin
\paper Some generalizations of Macaulay's combinatorial theorem for residue rings
\jour Mat. Sb.
\yr 2001
\vol 192
\issue 9
\pages 143--160
\mathnet{http://mi.mathnet.ru/sm598}
\crossref{https://doi.org/10.4213/sm598}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1867013}
\zmath{https://zbmath.org/?q=an:1031.13009}
\transl
\jour Sb. Math.
\yr 2001
\vol 192
\issue 9
\pages 1399--1416
\crossref{https://doi.org/10.1070/SM2001v192n09ABEH000598}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000173373400007}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-0035528294}
Linking options:
  • https://www.mathnet.ru/eng/sm598
  • https://doi.org/10.1070/SM2001v192n09ABEH000598
  • https://www.mathnet.ru/eng/sm/v192/i9/p143
  • This publication is cited in the following 3 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник - 1992–2005 Sbornik: Mathematics
    Statistics & downloads:
    Abstract page:327
    Russian version PDF:179
    English version PDF:8
    References:51
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024