Sbornik: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sbornik: Mathematics, 2001, Volume 192, Issue 6, Pages 843–861
DOI: https://doi.org/10.1070/SM2001v192n06ABEH000572
(Mi sm572)
 

This article is cited in 18 scientific papers (total in 18 papers)

Fourier series and $\delta$-subharmonic functions of finite $\gamma$-type in a half-plane

K. G. Malyutin

Ukrainian Academy of Banking
References:
Abstract: Let $\gamma(r)$ be a growth function and let $v(z)$ be a proper $\delta$-subharmonic function in the sense of Grishin in a complex half-plane, that is $v=v_1-v_2$, where $v_1$ and $v_2$ are proper subharmonic functions $(\lim\sup_{z\to t}v_i(z)\leqslant0$, for each real $t$, $i=1,2)$, let $\lambda=\lambda_+-\lambda_-$ be the full measure corresponding to $v$ and let $T(r,v)$ be its Nevanlinna characteristic. The class $J\delta(\gamma)$ of functions of finite $\gamma$-type is defined as follows: $v\in J\delta(\gamma)$ if $T(r,v)\leqslant A\gamma(Br)/r$ for some positive constants $A$ and $B$. The Fourier coefficients of $v$ are defined in the standard way:
$$ c_k(r,v)=\frac 2\pi\int_0^\pi v(re^{i\theta})\sin k\theta\,d\theta, \qquad r>0, \quad k\in\mathbb N. $$

The central result of the paper is the equivalence of the following properties:
  • (1) $v\in J\delta(\gamma)$;
  • (2) $N(r)\leqslant A_1\gamma(B_1r)/r$,
where $N(r)=N(r,\lambda_+)$ or $N(r)=N(r,\lambda_-)$, and $|c_k(r,v)|\leqslant A_2\gamma(B_2r)$. It is proved in addition that $J\delta(\gamma)=JS(\gamma)-JS(\gamma)$, where $JS(\gamma)$ is the class of proper subharmonic functions of finite $\gamma$-type.
Received: 13.06.2000
Russian version:
Matematicheskii Sbornik, 2001, Volume 192, Number 6, Pages 51–70
DOI: https://doi.org/10.4213/sm572
Bibliographic databases:
UDC: 517.535.4
MSC: 31A05, 31A10
Language: English
Original paper language: Russian
Citation: K. G. Malyutin, “Fourier series and $\delta$-subharmonic functions of finite $\gamma$-type in a half-plane”, Mat. Sb., 192:6 (2001), 51–70; Sb. Math., 192:6 (2001), 843–861
Citation in format AMSBIB
\Bibitem{Mal01}
\by K.~G.~Malyutin
\paper Fourier series and $\delta$-subharmonic functions of finite $\gamma$-type in a~half-plane
\jour Mat. Sb.
\yr 2001
\vol 192
\issue 6
\pages 51--70
\mathnet{http://mi.mathnet.ru/sm572}
\crossref{https://doi.org/10.4213/sm572}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1860141}
\zmath{https://zbmath.org/?q=an:0996.31001}
\transl
\jour Sb. Math.
\yr 2001
\vol 192
\issue 6
\pages 843--861
\crossref{https://doi.org/10.1070/SM2001v192n06ABEH000572}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000171221500011}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-0035538759}
Linking options:
  • https://www.mathnet.ru/eng/sm572
  • https://doi.org/10.1070/SM2001v192n06ABEH000572
  • https://www.mathnet.ru/eng/sm/v192/i6/p51
  • This publication is cited in the following 18 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник - 1992–2005 Sbornik: Mathematics
    Statistics & downloads:
    Abstract page:582
    Russian version PDF:221
    English version PDF:22
    References:62
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024