Recueil Mathématique (Nouvelle série)
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Recueil Mathématique (Nouvelle série), 1936, Volume 1(43), Number 6, Pages 931–951 (Mi sm5508)  

Solution du premier problème aux limites pour l'équation $\dfrac{\partial^2u}{\partial t}=a_1\dfrac{\partial u}{\partial x}+a_2\dfrac{\partial u}{\partial y}+a_3\dfrac{\partial u}{\partial t}+su+f$

N. Piscounov
Received: 11.04.1936
Bibliographic databases:
Language: French
Citation: N. Piscounov, “Solution du premier problème aux limites pour l'équation $\dfrac{\partial^2u}{\partial t}=a_1\dfrac{\partial u}{\partial x}+a_2\dfrac{\partial u}{\partial y}+a_3\dfrac{\partial u}{\partial t}+su+f$”, Sb. Math., 43:6 (1936)
Citation in format AMSBIB
\Bibitem{Pis36}
\by N.~Piscounov
\paper Solution du premier probl\`eme aux limites pour l'\'equation
$\dfrac{\partial^2u}{\partial t}=a_1\dfrac{\partial u}{\partial x}+a_2\dfrac{\partial u}{\partial y}+a_3\dfrac{\partial u}{\partial t}+su+f$
\jour Sb. Math.
\yr 1936
\vol 43
\issue 6
\mathnet{http://mi.mathnet.ru//eng/sm5508}
\zmath{https://zbmath.org/?q=an:0016.11404|62.1311.02}
Linking options:
  • https://www.mathnet.ru/eng/sm5508
  • https://www.mathnet.ru/eng/sm/v43/i6/p931
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник (новая серия) - 1936–1946 Sbornik: Mathematics
    Statistics & downloads:
    Abstract page:287
    Full-text PDF :105
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024