Sbornik: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sbornik: Mathematics, 2009, Volume 200, Issue 4, Pages 521–548
DOI: https://doi.org/10.1070/SM2009v200n04ABEH004007
(Mi sm5328)
 

This article is cited in 4 scientific papers (total in 4 papers)

On Riemann sums and maximal functions in $\mathbb R^n$

G. A. Karagulyan

Institute of Mathematics, National Academy of Sciences of Armenia
References:
Abstract: We investigate problems on a.e. convergence of Riemann sums
\begin{equation*} R_nf(x)=\frac1n\sum_{k=0}^{n-1}f\biggl(x+\frac kn\biggr), \qquad x\in\mathbb T, \end{equation*}
with the use of classical maximal functions in $\mathbb R^n$. A theorem on the equivalence of Riemann and ordinary maximal functions is proved, which allows us to use techniques and results of the theory of differentiation of integrals in $\mathbb R^n$ in these problems. Using this method we prove that for a certain sequence $\{n_k\}$ the Riemann sums $R_{n_k}f(x)$ converge a.e. to $f\in L^p$, $p>1$.
Bibliography: 23 titles.
Keywords: Riemann sums, maximal functions, covering lemmas, sweeping out properties.
Received: 13.04.2008
Russian version:
Matematicheskii Sbornik, 2009, Volume 200, Number 4, Pages 53–82
DOI: https://doi.org/10.4213/sm5328
Bibliographic databases:
UDC: 517.518.121
MSC: 42B25, 26A42, 40A30
Language: English
Original paper language: Russian
Citation: G. A. Karagulyan, “On Riemann sums and maximal functions in $\mathbb R^n$”, Mat. Sb., 200:4 (2009), 53–82; Sb. Math., 200:4 (2009), 521–548
Citation in format AMSBIB
\Bibitem{Kar09}
\by G.~A.~Karagulyan
\paper On Riemann sums and maximal functions in~$\mathbb R^n$
\jour Mat. Sb.
\yr 2009
\vol 200
\issue 4
\pages 53--82
\mathnet{http://mi.mathnet.ru/sm5328}
\crossref{https://doi.org/10.4213/sm5328}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2531880}
\zmath{https://zbmath.org/?q=an:1167.42006}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2009SbMat.200..521K}
\elib{https://elibrary.ru/item.asp?id=19066122}
\transl
\jour Sb. Math.
\yr 2009
\vol 200
\issue 4
\pages 521--548
\crossref{https://doi.org/10.1070/SM2009v200n04ABEH004007}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000267858800011}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-67650902491}
Linking options:
  • https://www.mathnet.ru/eng/sm5328
  • https://doi.org/10.1070/SM2009v200n04ABEH004007
  • https://www.mathnet.ru/eng/sm/v200/i4/p53
  • This publication is cited in the following 4 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник Sbornik: Mathematics
    Statistics & downloads:
    Abstract page:802
    Russian version PDF:276
    English version PDF:14
    References:85
    First page:21
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024