|
This article is cited in 4 scientific papers (total in 4 papers)
On Riemann sums and maximal functions in $\mathbb R^n$
G. A. Karagulyan Institute of Mathematics, National Academy of Sciences of Armenia
Abstract:
We investigate problems on a.e. convergence of Riemann sums
\begin{equation*}
R_nf(x)=\frac1n\sum_{k=0}^{n-1}f\biggl(x+\frac kn\biggr), \qquad x\in\mathbb T,
\end{equation*}
with the use of classical maximal functions in $\mathbb R^n$. A theorem on the equivalence of Riemann and ordinary maximal functions is proved, which allows us to use techniques and results of the theory
of differentiation of integrals in $\mathbb R^n$ in these problems. Using this method we prove that for a certain sequence $\{n_k\}$ the Riemann sums $R_{n_k}f(x)$ converge a.e. to $f\in L^p$, $p>1$.
Bibliography: 23 titles.
Keywords:
Riemann sums, maximal functions, covering lemmas, sweeping out properties.
Received: 13.04.2008
Citation:
G. A. Karagulyan, “On Riemann sums and maximal functions in $\mathbb R^n$”, Sb. Math., 200:4 (2009), 521–548
Linking options:
https://www.mathnet.ru/eng/sm5328https://doi.org/10.1070/SM2009v200n04ABEH004007 https://www.mathnet.ru/eng/sm/v200/i4/p53
|
Statistics & downloads: |
Abstract page: | 816 | Russian version PDF: | 277 | English version PDF: | 17 | References: | 90 | First page: | 21 |
|