Sbornik: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sbornik: Mathematics, 2000, Volume 191, Issue 12, Pages 1809–1825
DOI: https://doi.org/10.1070/sm2000v191n12ABEH000529
(Mi sm529)
 

This article is cited in 10 scientific papers (total in 10 papers)

Setting and solving several factorization problems for integral operators

N. B. Engibaryan

Byurakan Astrophysical Observatory, National Academy of Sciences of Armenia
References:
Abstract: The problem of factorization
$$ I-K=(I-U_-)(I-U_+), $$
is considered. Here $I$ is the identity operator, $K$ is a fixed integral operator of Fredholm type:
$$ (Kf)(x)=\int_a^bk(x,t)f(t)\,dt, \qquad -\infty\leqslant a<b\leqslant+\infty, $$
$U_\pm$ are unknown upper and lower Volterra operators. Classes of generalized Volterra operators $U_\pm$ are introduced such that $I-U_\pm$ are not necessarily invertible operators in the spaces of functions on $(a,b)$ under consideration. A combination of the method of non-linear factorization equations and a priori estimates brings forth new results on the existence and properties of the solution to this problem for $k\geqslant 0$, both in the subcritical case $\mu<1$ and in the critical case $\mu=1$, where $\mu=r(K)$ the spectral radius of the operator $K$. In addition, the problem of non-Volterra factorization is posed and studied, when the kernels of $U_+$ and $U_-$ vanish on some parts $S_-$ and $S_+$ of the domain $S=(a,b)^2$ such that $S_+\cup S_-=S$.
Received: 27.04.1999
Russian version:
Matematicheskii Sbornik, 2000, Volume 191, Number 12, Pages 61–76
DOI: https://doi.org/10.4213/sm529
Bibliographic databases:
UDC: 517.9
MSC: 45B05, 45D05, 47Gxx
Language: English
Original paper language: Russian
Citation: N. B. Engibaryan, “Setting and solving several factorization problems for integral operators”, Mat. Sb., 191:12 (2000), 61–76; Sb. Math., 191:12 (2000), 1809–1825
Citation in format AMSBIB
\Bibitem{Eng00}
\by N.~B.~Engibaryan
\paper Setting and solving several factorization problems for integral operators
\jour Mat. Sb.
\yr 2000
\vol 191
\issue 12
\pages 61--76
\mathnet{http://mi.mathnet.ru/sm529}
\crossref{https://doi.org/10.4213/sm529}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1829414}
\zmath{https://zbmath.org/?q=an:1009.45013}
\transl
\jour Sb. Math.
\yr 2000
\vol 191
\issue 12
\pages 1809--1825
\crossref{https://doi.org/10.1070/sm2000v191n12ABEH000529}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000168023700010}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-0034340591}
Linking options:
  • https://www.mathnet.ru/eng/sm529
  • https://doi.org/10.1070/sm2000v191n12ABEH000529
  • https://www.mathnet.ru/eng/sm/v191/i12/p61
  • This publication is cited in the following 10 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник - 1992–2005 Sbornik: Mathematics
    Statistics & downloads:
    Abstract page:702
    Russian version PDF:245
    English version PDF:14
    References:80
    First page:2
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024