Sbornik: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sbornik: Mathematics, 2009, Volume 200, Issue 1, Pages 77–93
DOI: https://doi.org/10.1070/SM2009v200n01ABEH003987
(Mi sm4878)
 

This article is cited in 6 scientific papers (total in 6 papers)

Strong asymptotics of polynomials orthogonal with respect to a complex weight

S. P. Suetin

Steklov Mathematical Institute, Russian Academy of Sciences
References:
Abstract: For polynomials orthogonal with respect to a complex-valued weight on the closed interval $\Delta=[-1,1]$ a strong asymptotic formula in a neighbourhood of $\Delta$ is obtained. In particular, for the ‘trigonometric’ weight $\rho_0(x)=e^{ix}$, $x\in\Delta$, this formula yields a description of the asymptotic behaviour of each of the $n$ zeros of the $n$th orthogonal polynomial as $n\to\infty$. This strong asymptotic formula is deduced on the basis of Nuttall's singular integral equation.
Bibliography: 28 titles.
Keywords: Padé approximants, orthogonal polynomials, strong asymptotics.
Received: 19.03.2008
Bibliographic databases:
Document Type: Article
UDC: 517.538
MSC: Primary 42C05; Secondary 33A65, 41A21
Language: English
Original paper language: Russian
Citation: S. P. Suetin, “Strong asymptotics of polynomials orthogonal with respect to a complex weight”, Sb. Math., 200:1 (2009), 77–93
Citation in format AMSBIB
\Bibitem{Sue09}
\by S.~P.~Suetin
\paper Strong asymptotics of polynomials orthogonal with respect to
a~complex weight
\jour Sb. Math.
\yr 2009
\vol 200
\issue 1
\pages 77--93
\mathnet{http://mi.mathnet.ru//eng/sm4878}
\crossref{https://doi.org/10.1070/SM2009v200n01ABEH003987}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2499677}
\zmath{https://zbmath.org/?q=an:1163.42011}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2009SbMat.200...77S}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000266224500003}
\elib{https://elibrary.ru/item.asp?id=19066082}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-67650941238}
Linking options:
  • https://www.mathnet.ru/eng/sm4878
  • https://doi.org/10.1070/SM2009v200n01ABEH003987
  • https://www.mathnet.ru/eng/sm/v200/i1/p81
  • This publication is cited in the following 6 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник Sbornik: Mathematics
    Statistics & downloads:
    Abstract page:839
    Russian version PDF:256
    English version PDF:13
    References:92
    First page:23
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024