Abstract:
The Cauchy problem with non-negative continuous initial function for the equation
ut=Δum−up,(x,t)∈S=RN×R+,
is considered for 0<p<1, p<m. For generalized solutions of this problem with initial data increasing at infinity several results on their behaviour as t→∞ are established.
Citation:
A. L. Gladkov, “Behaviour of solutions of certain quasilinear parabolic equations with power-type non-linearities”, Sb. Math., 191:3 (2000), 341–358
\Bibitem{Gla00}
\by A.~L.~Gladkov
\paper Behaviour of solutions of certain quasilinear parabolic equations with power-type non-linearities
\jour Sb. Math.
\yr 2000
\vol 191
\issue 3
\pages 341--358
\mathnet{http://mi.mathnet.ru/eng/sm462}
\crossref{https://doi.org/10.1070/sm2000v191n03ABEH000462}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1773252}
\zmath{https://zbmath.org/?q=an:0957.35073}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000088115700003}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-0034338837}
Linking options:
https://www.mathnet.ru/eng/sm462
https://doi.org/10.1070/sm2000v191n03ABEH000462
https://www.mathnet.ru/eng/sm/v191/i3/p25
This publication is cited in the following 5 articles:
Kon'kov A.A., Shishkov A.E., “On Large Time Behavior of Solutions of Higher Order Evolution Inequalities With Fast Diffusion”, J. Math. Anal. Appl., 506:2 (2022), 125722
Kon'kov A., Shishkov A., “On Stabilization of Solutions of Higher Order Evolution Inequalities”, Asymptotic Anal., 115:1-2 (2019), 1–17
José Pedro Moreno, Rolf Schneider, “Diametrically complete sets in Minkowski spaces”, Isr. J. Math., 191:2 (2012), 701
Prokhozhii, SA, “On the vanishing of solutions of quasilinear parabolic equations”, Differential Equations, 42:10 (2006), 1462
Khramtsov, OV, “Relative stabilization of a nonlinear degenerate parabolic equation”, Differential Equations, 37:12 (2001), 1736