|
This article is cited in 4 scientific papers (total in 4 papers)
Embedding the weighted Sobolev space $W^l_p(\Omega;v)$ in the space $L_p(\Omega;\omega)$
L. K. Kusainova Institute of Applied Mathematics National Academy of Sciences of Kazakhstan
Abstract:
Several conditions on the weight functions $v$ and $\omega$ are obtained that guarantee the embedding inequality
$$
\|u\|_{L_p(\Omega;\omega)}\leqslant C\biggl[\biggl(\int_\Omega|\nabla_lu|^p\biggr)^{1/p}+\biggl(\int_\Omega|u|^pv\biggr)^{1/p}\biggr], \qquad 1<p<n/l.
$$
Classes of weights $\omega$ and $v$ in which these conditions are both necessary and sufficient are described.
Received: 02.12.1997
Citation:
L. K. Kusainova, “Embedding the weighted Sobolev space $W^l_p(\Omega;v)$ in the space $L_p(\Omega;\omega)$”, Mat. Sb., 191:2 (2000), 132–148; Sb. Math., 191:2 (2000), 275–290
Linking options:
https://www.mathnet.ru/eng/sm455https://doi.org/10.1070/sm2000v191n02ABEH000455 https://www.mathnet.ru/eng/sm/v191/i2/p132
|
Statistics & downloads: |
Abstract page: | 606 | Russian version PDF: | 313 | English version PDF: | 47 | References: | 96 | First page: | 1 |
|