Sbornik: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sbornik: Mathematics, 2000, Volume 191, Issue 1, Pages 97–120
DOI: https://doi.org/10.1070/sm2000v191n01ABEH000449
(Mi sm449)
 

This article is cited in 39 scientific papers (total in 40 papers)

On everywhere divergence of trigonometric Fourier series

S. V. Konyagin

M. V. Lomonosov Moscow State University
References:
Abstract: The following theorem is established.
Theorem. {\it Let a function $\varphi\colon[0,+\infty)\to[0,+\infty)$ and a sequence $\{\psi(m)\}$ satisfy the following condition: the function $\varphi(u)/u$ is non-decreasing on $(0,+\infty)$, $\psi(m)\geqslant 1$ $(m=1,2,\dots)$ and $\varphi(m)\psi(m)=o(m\sqrt{\ln m}/\sqrt{\ln\ln m}\,)$ as $m\to\infty$. Then there is a function $f\in L[-\pi,\pi]$ such that
$$ \int _{-\pi}^\pi\varphi(|f(x)|)\,dx<\infty $$
and $\limsup_{m\to\infty}S_m(f,x)/\psi(m)=\infty$ for all $x\in[-\pi,\pi]$ here $S_m(f)$ is the $m$-th partial sum of the trigonometric Fourier series of $f$}.
Received: 11.06.1999
Russian version:
Matematicheskii Sbornik, 2000, Volume 191, Number 1, Pages 103–126
DOI: https://doi.org/10.4213/sm449
Bibliographic databases:
Document Type: Article
UDC: 517.518.45
MSC: 42a20
Language: English
Original paper language: Russian
Citation: S. V. Konyagin, “On everywhere divergence of trigonometric Fourier series”, Mat. Sb., 191:1 (2000), 103–126; Sb. Math., 191:1 (2000), 97–120
Citation in format AMSBIB
\Bibitem{Kon00}
\by S.~V.~Konyagin
\paper On everywhere divergence of trigonometric Fourier series
\jour Mat. Sb.
\yr 2000
\vol 191
\issue 1
\pages 103--126
\mathnet{http://mi.mathnet.ru/sm449}
\crossref{https://doi.org/10.4213/sm449}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1753494}
\zmath{https://zbmath.org/?q=an:0967.42004}
\transl
\jour Sb. Math.
\yr 2000
\vol 191
\issue 1
\pages 97--120
\crossref{https://doi.org/10.1070/sm2000v191n01ABEH000449}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000087494000004}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-0034341425}
Linking options:
  • https://www.mathnet.ru/eng/sm449
  • https://doi.org/10.1070/sm2000v191n01ABEH000449
  • https://www.mathnet.ru/eng/sm/v191/i1/p103
  • This publication is cited in the following 40 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник - 1992–2005 Sbornik: Mathematics
    Statistics & downloads:
    Abstract page:1103
    Russian version PDF:439
    English version PDF:44
    References:99
    First page:4
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024