Loading [MathJax]/jax/output/SVG/config.js
Sbornik: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sbornik: Mathematics, 1999, Volume 190, Issue 11, Pages 1689–1714
DOI: https://doi.org/10.1070/sm1999v190n11ABEH000441
(Mi sm441)
 

This article is cited in 41 scientific papers (total in 41 papers)

Relaxation in non-convex optimal control problems described by first-order evolution equations

A. A. Tolstonogov

Institute of System Dynamics and Control Theory, Siberian Branch of the Russian Academy of Sciences
References:
Abstract: The problem is considered of minimizing an integral functional with integrand that is not convex in the control, on solutions of a control system described by a first-order non-linear evolution equation with mixed non-convex constraints on the control. A relaxation problem is treated along with the original problem. Under appropriate assumptions it is proved that the relaxation problem has an optimal solution and that for each optimal solution there is a minimizing sequence for the original problem that converges to the optimal solution. Moreover, in the appropriate topologies the convergence is uniform simultaneously for the trajectory, the control, and the functional. The converse also holds. An example of a non-linear parabolic control system is treated in detail.
Received: 29.03.1999
Bibliographic databases:
UDC: 517.97
MSC: Primary 49J15; Secondary 49N65, 35F25, 49J24, 34A60, 34G20
Language: English
Original paper language: Russian
Citation: A. A. Tolstonogov, “Relaxation in non-convex optimal control problems described by first-order evolution equations”, Sb. Math., 190:11 (1999), 1689–1714
Citation in format AMSBIB
\Bibitem{Tol99}
\by A.~A.~Tolstonogov
\paper Relaxation in non-convex optimal control problems described by first-order evolution equations
\jour Sb. Math.
\yr 1999
\vol 190
\issue 11
\pages 1689--1714
\mathnet{http://mi.mathnet.ru/eng/sm441}
\crossref{https://doi.org/10.1070/sm1999v190n11ABEH000441}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1735140}
\zmath{https://zbmath.org/?q=an:0955.49011}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000085909400005}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-0033235833}
Linking options:
  • https://www.mathnet.ru/eng/sm441
  • https://doi.org/10.1070/sm1999v190n11ABEH000441
  • https://www.mathnet.ru/eng/sm/v190/i11/p135
  • This publication is cited in the following 41 articles:
    1. A. A. Tolstonogov, “Relaxation in an Optimal Control Problem Described by a Coupled System with Maximal Monotone Operators”, Sib Math J, 66:2 (2025), 364  crossref
    2. Alexandr Alexandrovich Tolstonogov, Igor Vyacheslavovich Bychkov, “Existence and relaxation of BV solutions for a sweeping process with prox-regular sets”, EECT, 2025  crossref
    3. Nouha Boudjerida, Doria Affane, Mustapha Fateh Yarou, “Truncated Perturbation to Evolution Problems Involving Time-Dependent Maximal Monotone Operators”, Lobachevskii J Math, 45:2 (2024), 621  crossref
    4. Shouchuan Hu, Nikolaos S. Papageorgiou, Birkhäuser Advanced Texts Basler Lehrbücher, Research Topics in Analysis, Volume II, 2024, 483  crossref
    5. Caijing Jiang, Fengzhen Long, “Existence and convergence for multiple feedback control problems governed by evolution equations”, Applicable Analysis, 2024, 1  crossref
    6. Yirong Jiang, Zhouchao Wei, Guoji Tang, Irene Moroz, “Topological properties of solution sets for nonlinear evolution hemivariational inequalities and applications”, Nonlinear Analysis: Real World Applications, 71 (2023), 103798  crossref
    7. Charles Castaing, Christiane Godet-Thobie, Soumia Saïdi, Manuel D. P. Monteiro Marques, “Various Perturbations of Time Dependent Maximal Monotone/Accretive Operators in Evolution Inclusions with Applications”, Appl Math Optim, 87:2 (2023)  crossref
    8. Nouha Boudjerida, Doria Affane, Mustapha Fateh Yarou, “Non-convex perturbation to evolution problems involving Moreau's sweeping process”, Annals of West University of Timisoara - Mathematics and Computer Science, 59:1 (2023), 151  crossref
    9. Jiang Y.-r. Huang N.-j. Zhang Q.-f. Shang Ch.-ch., “Relaxation in Nonconvex Optimal Control Problems Governed By Evolution Inclusions With the Difference of Two Clarke'S Subdifferentials”, Int. J. Control, 94:2 (2021), 534–547  crossref  isi  scopus
    10. Li J., Bin M., “Control Systems Described By a Class of Fractional Semilinear Evolution Hemivariational Inequalities and Their Relaxation Property”, Optimization, 2021  crossref  isi
    11. Bin M., Deng H., Li Yu., Zhao J., “Properties of the Set of Admissible “State Control” Pair For a Class of Fractional Semilinear Evolution Control Systems”, Fract. Calc. Appl. Anal., 24:4 (2021), 1275–1298  crossref  isi
    12. Castaing Ch. Saidi S., “Lipschitz Perturbation to Evolution Inclusion Driven By Time-Dependent Maximal Monotone Operators”, Topol. Methods Nonlinear Anal., 58:2 (2021), 677–712  crossref  isi
    13. A. A. Tolstonogov, “Bogolyubov's theorem for a controlled system related to a variational inequality”, Izv. Math., 84:6 (2020), 1192–1223  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib
    14. Papageorgiou N.S., Radulescu V.D., Repovs D.D., “Relaxation Methods For Optimal Control Problems”, Bull. Math. Sci., 10:1 (2020), UNSP 2050004  crossref  isi
    15. Bin M., Liu Zh., “Relaxation in Nonconvex Optimal Control For Nonlinear Evolution Hemivariational Inequalities”, Nonlinear Anal.-Real World Appl., 50 (2019), 613–632  crossref  mathscinet  zmath  isi
    16. Bin M., Liu Zh., “On the “Bang-Bang” Principle For Nonlinear Evolution Hemivariational Inequalities Control Systems”, J. Math. Anal. Appl., 480:1 (2019), UNSP 123364  crossref  mathscinet  isi
    17. Krejci P., Timoshin S.A., Tolstonogov A.A., “Relaxation and Optimisation of a Phase-Field Control System With Hysteresis”, Int. J. Control, 91:1 (2018), 85–100  crossref  mathscinet  zmath  isi  scopus  scopus  scopus
    18. Bayraktar E., Keller Ch., “Path-Dependent Hamilton–Jacobi Equations in Infinite Dimensions”, J. Funct. Anal., 275:8 (2018), 2096–2161  crossref  mathscinet  zmath  isi  scopus
    19. Tolstonogov A.A., “Existence and relaxation of solutions for a subdifferential inclusion with unbounded perturbation”, J. Math. Anal. Appl., 447:1 (2017), 269–288  crossref  mathscinet  zmath  isi  scopus
    20. Aiki T., Timoshin S.A., “Relaxation For a Control Problem in Concrete Carbonation Modeling”, SIAM J. Control Optim., 55:6 (2017), 3489–3502  crossref  mathscinet  zmath  isi  scopus  scopus  scopus
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник - 1992–2005 Sbornik: Mathematics
    Statistics & downloads:
    Abstract page:748
    Russian version PDF:283
    English version PDF:39
    References:98
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025