Sbornik: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sbornik: Mathematics, 1999, Volume 190, Issue 11, Pages 1689–1714
DOI: https://doi.org/10.1070/sm1999v190n11ABEH000441
(Mi sm441)
 

This article is cited in 38 scientific papers (total in 38 papers)

Relaxation in non-convex optimal control problems described by first-order evolution equations

A. A. Tolstonogov

Institute of System Dynamics and Control Theory, Siberian Branch of the Russian Academy of Sciences
References:
Abstract: The problem is considered of minimizing an integral functional with integrand that is not convex in the control, on solutions of a control system described by a first-order non-linear evolution equation with mixed non-convex constraints on the control. A relaxation problem is treated along with the original problem. Under appropriate assumptions it is proved that the relaxation problem has an optimal solution and that for each optimal solution there is a minimizing sequence for the original problem that converges to the optimal solution. Moreover, in the appropriate topologies the convergence is uniform simultaneously for the trajectory, the control, and the functional. The converse also holds. An example of a non-linear parabolic control system is treated in detail.
Received: 29.03.1999
Bibliographic databases:
UDC: 517.97
MSC: Primary 49J15; Secondary 49N65, 35F25, 49J24, 34A60, 34G20
Language: English
Original paper language: Russian
Citation: A. A. Tolstonogov, “Relaxation in non-convex optimal control problems described by first-order evolution equations”, Sb. Math., 190:11 (1999), 1689–1714
Citation in format AMSBIB
\Bibitem{Tol99}
\by A.~A.~Tolstonogov
\paper Relaxation in non-convex optimal control problems described by first-order evolution equations
\jour Sb. Math.
\yr 1999
\vol 190
\issue 11
\pages 1689--1714
\mathnet{http://mi.mathnet.ru//eng/sm441}
\crossref{https://doi.org/10.1070/sm1999v190n11ABEH000441}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1735140}
\zmath{https://zbmath.org/?q=an:0955.49011}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000085909400005}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-0033235833}
Linking options:
  • https://www.mathnet.ru/eng/sm441
  • https://doi.org/10.1070/sm1999v190n11ABEH000441
  • https://www.mathnet.ru/eng/sm/v190/i11/p135
  • This publication is cited in the following 38 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник - 1992–2005 Sbornik: Mathematics
    Statistics & downloads:
    Abstract page:668
    Russian version PDF:271
    English version PDF:29
    References:88
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024