Matematicheskii Sbornik. Novaya Seriya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskii Sbornik. Novaya Seriya, 1965, Volume 68(110), Number 2, Pages 174–227 (Mi sm4301)  

This article is cited in 4 scientific papers (total in 4 papers)

The existence of spectral functions of generalized second order differential systems with boundary conditions at the singular end

I. S. Kats
Received: 20.05.1964
Bibliographic databases:
UDC: 517.91+517.43
Language: Russian
Citation: I. S. Kats, “The existence of spectral functions of generalized second order differential systems with boundary conditions at the singular end”, Mat. Sb. (N.S.), 68(110):2 (1965), 174–227
Citation in format AMSBIB
\Bibitem{Kat65}
\by I.~S.~Kats
\paper The existence of spectral functions of generalized second order differential systems with boundary conditions at the singular end
\jour Mat. Sb. (N.S.)
\yr 1965
\vol 68(110)
\issue 2
\pages 174--227
\mathnet{http://mi.mathnet.ru/sm4301}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=209551}
\zmath{https://zbmath.org/?q=an:0144.10003}
Linking options:
  • https://www.mathnet.ru/eng/sm4301
  • https://www.mathnet.ru/eng/sm/v110/i2/p174
  • This publication is cited in the following 4 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник (новая серия) - 1964–1988 Sbornik: Mathematics
    Statistics & downloads:
    Abstract page:302
    Full-text PDF :171
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024