Sbornik: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sbornik: Mathematics, 2008, Volume 199, Issue 8, Pages 1201–1223
DOI: https://doi.org/10.1070/SM2008v199n08ABEH003959
(Mi sm4110)
 

This article is cited in 37 scientific papers (total in 37 papers)

Semifree circle actions, Bott towers and quasitoric manifolds

M. Masudaa, T. E. Panovbc

a Osaka City University
b Institute for Theoretical and Experimental Physics (Russian Federation State Scientific Center)
c M. V. Lomonosov Moscow State University, Faculty of Mechanics and Mathematics
References:
Abstract: A Bott tower is the total space of a tower of fibre bundles with base $\mathbb C P^1$ and fibres $\mathbb C P^1$. Every Bott tower of height $n$ is a smooth projective toric variety whose moment polytope is combinatorially equivalent to an $n$-cube. A circle action is semifree if it is free on the complement to the fixed points. We show that a quasitoric manifold over a combinatorial $n$-cube admitting a semifree action of a 1-dimensional subtorus with isolated fixed points is a Bott tower. Then we show that every Bott tower obtained in this way is topologically trivial, that is, homeomorphic to a product of 2-spheres. This extends a recent result of Il'inskiǐ, who showed that a smooth compact toric variety admitting a semifree action of a 1-dimensional subtorus with isolated fixed points is homeomorphic to a product of 2-spheres, and makes a further step towards our understanding of Hattori's problem of semifree circle actions. Finally, we show that if the cohomology ring of a quasitoric manifold is isomorphic to that of a product of 2-spheres, then the manifold is homeomorphic to this product. In the case of Bott towers the homeomorphism is actually a diffeomorphism.
Bibliography: 18 titles.
Received: 20.11.2007 and 04.03.2008
Russian version:
Matematicheskii Sbornik, 2008, Volume 199, Number 8, Pages 95–122
DOI: https://doi.org/10.4213/sm4110
Bibliographic databases:
UDC: 515.14+515.16
MSC: Primary 57S15; Secondary 14M25
Language: English
Original paper language: Russian
Citation: M. Masuda, T. E. Panov, “Semifree circle actions, Bott towers and quasitoric manifolds”, Sb. Math., 199:8 (2008), 1201–1223
Citation in format AMSBIB
\Bibitem{MasPan08}
\by M.~Masuda, T.~E.~Panov
\paper Semifree circle actions, Bott towers and quasitoric manifolds
\jour Sb. Math.
\yr 2008
\vol 199
\issue 8
\pages 1201--1223
\mathnet{http://mi.mathnet.ru//eng/sm4110}
\crossref{https://doi.org/10.1070/SM2008v199n08ABEH003959}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2452268}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000260697900012}
\elib{https://elibrary.ru/item.asp?id=20359350}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-57049083550}
Linking options:
  • https://www.mathnet.ru/eng/sm4110
  • https://doi.org/10.1070/SM2008v199n08ABEH003959
  • https://www.mathnet.ru/eng/sm/v199/i8/p95
  • This publication is cited in the following 37 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник Sbornik: Mathematics
    Statistics & downloads:
    Abstract page:596
    Russian version PDF:230
    English version PDF:29
    References:64
    First page:7
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024