\Bibitem{Ole68}
\by A.~M.~Olevskii
\paper On some peculiarities of Fourier series in $L^p$ ($p<2$)
\jour Math. USSR-Sb.
\yr 1968
\vol 6
\issue 2
\pages 233--239
\mathnet{http://mi.mathnet.ru/eng/sm4057}
\crossref{https://doi.org/10.1070/SM1968v006n02ABEH001061}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=440273}
\zmath{https://zbmath.org/?q=an:0195.35401}
Linking options:
https://www.mathnet.ru/eng/sm4057
https://doi.org/10.1070/SM1968v006n02ABEH001061
https://www.mathnet.ru/eng/sm/v119/i2/p251
This publication is cited in the following 12 articles:
Sargsyan A., “On the Existence of Universal Functions With Respect to the Double Walsh System For Classes of Integrable Functions”, Colloq. Math., 161:1 (2020), 111–129
Sargsyan A., Grigoryan M., “Universal Functions With Respect to the Double Walsh System For Classes of Integrable Functions”, Anal. Math., 46:2 (2020), 367–392
Grigoryan M., Sargsyan A., “On the Structure of Universal Functions For Classes l-P[0,1)(2), P Is An Element of (0,1), With Respect to the Double Walsh System”, Banach J. Math. Anal., 13:3 (2019), 647–674
A. A. Sargsyan, “On the structure of functions, universal for weighted spaces Lpμ[0,1], p≥1”, J. Contemp. Math. Anal.-Armen. Aca., 54:3 (2019), 163–175
Sargsyan A., Grigoryan M., “Universal Functions For Classes l-P[0,1)2, P Is An Element of(0,1), With Respect to the Double Walsh System”, Positivity, 23:5 (2019), 1261–1280
M. G. Grigoryan, A. A. Sargsyan, “The structure of universal functions for Lp-spaces, p∈(0,1)”, Sb. Math., 209:1 (2018), 35–55
A. A. Sargsyan, “Quasiuniversal Fourier–Walsh Series for the Classes Lp[0,1], p>1”, Math. Notes, 104:2 (2018), 278–292
M. G. Grigoryan, A. A. Sargsyan, “On existence of a universal function for Lp[0,1] with p∈(0,1)”, Siberian Math. J., 57:5 (2016), 796–808
A. A. Talalyan, R. I. Ovsepian, “The representation theorems of D. E. Men'shov and their impact on the development of the metric theory of functions”, Russian Math. Surveys, 47:5 (1992), 13–47
P. L. Ul'yanov, “Luzin's work on the metric theory of functions”, Russian Math. Surveys, 40:3 (1985), 15–77
N. B. Pogosyan, “Universal Fourier series”, Russian Math. Surveys, 38:1 (1983), 211–212
P. L. Ul'yanov, “Representation of functions by series and classes φ(L)”, Russian Math. Surveys, 27:2 (1972), 1–54