Abstract:
It is proved that every smooth function of a real variable with compact support is a convolution of two functions of the same type. Generalizations of this result to other function classes are presented.
\Bibitem{Yul99}
\by R.~S.~Yulmukhametov
\paper Solution of the~Ehrenpreis factorization problem
\jour Sb. Math.
\yr 1999
\vol 190
\issue 4
\pages 597--629
\mathnet{http://mi.mathnet.ru/eng/sm400}
\crossref{https://doi.org/10.1070/sm1999v190n04ABEH000400}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1702481}
\zmath{https://zbmath.org/?q=an:0940.30030}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000082221600013}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-0033244096}
Linking options:
https://www.mathnet.ru/eng/sm400
https://doi.org/10.1070/sm1999v190n04ABEH000400
https://www.mathnet.ru/eng/sm/v190/i4/p123
This publication is cited in the following 8 articles:
Kh. Voitovych, “ON THE DECOMPOSITION PROBLEM FOR FUNCTIONS OF SMALL EXPONENTIAL TYPE”, BMJ, 11:1 (2023), 52
Francesco Di Plinio, Walton Green, Brett D. Wick, “Bilinear wavelet representation of
Calderón–Zygmund forms”, Pure Appl. Analysis, 5:1 (2023), 47
Debrouwere A., Prangoski B., Vindas J., “Factorization in Denjoy-Carleman Classes Associated to Representations of (R-D, +)”, J. Funct. Anal., 280:3 (2021), 108831
Dilnyi V., “Solvability Criterion For Convolution Equations on a Half-Strip”, Complex Anal. Oper. Theory, 15:4 (2021), 73
N. F. Abuzyarova, “Principal submodules in the module of entire functions, which is dual to the Schwartz space, and weak spectral synthesis in the Schwartz space”, J. Math. Sci. (N. Y.), 241:6 (2019), 658–671
N. F. Abuzyarova, “On 2-generateness of weakly localizable submodules in the module of entire functions of exponential type and polynomial growth on the real axis”, Ufa Math. J., 8:3 (2016), 8–21
V. N. Dilnyi, “Splitting of some spaces of analytic functions”, Ufa Math. J., 6:2 (2014), 25–34