Mathematics of the USSR-Sbornik
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mathematics of the USSR-Sbornik, 1968, Volume 4, Issue 3, Pages 343–367
DOI: https://doi.org/10.1070/SM1968v004n03ABEH002803
(Mi sm3991)
 

This article is cited in 3 scientific papers (total in 3 papers)

$n$-dimensional analogues of Bernstein's integral formula

Yu. A. Aminov
Received: 25.02.1967
Bibliographic databases:
UDC: 513.73
Language: English
Original paper language: Russian
Citation: Yu. A. Aminov, “$n$-dimensional analogues of Bernstein's integral formula”, Math. USSR-Sb., 4:3 (1968), 343–367
Citation in format AMSBIB
\Bibitem{Ami68}
\by Yu.~A.~Aminov
\paper $n$-dimensional analogues of Bernstein's integral formula
\jour Math. USSR-Sb.
\yr 1968
\vol 4
\issue 3
\pages 343--367
\mathnet{http://mi.mathnet.ru//eng/sm3991}
\crossref{https://doi.org/10.1070/SM1968v004n03ABEH002803}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=224034}
\zmath{https://zbmath.org/?q=an:0176.18704|0155.49604}
Linking options:
  • https://www.mathnet.ru/eng/sm3991
  • https://doi.org/10.1070/SM1968v004n03ABEH002803
  • https://www.mathnet.ru/eng/sm/v117/i3/p375
  • This publication is cited in the following 3 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник (новая серия) - 1964–1988 Sbornik: Mathematics
    Statistics & downloads:
    Abstract page:340
    Russian version PDF:111
    English version PDF:7
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024