Sbornik: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sbornik: Mathematics, 2009, Volume 200, Issue 3, Pages 325–338
DOI: https://doi.org/10.1070/SM2009v200n03ABEH003998
(Mi sm3952)
 

This article is cited in 2 scientific papers (total in 2 papers)

On the continuous part of codimension 2 algebraic cycles on three-dimensional varieties

V. I. Guletskii

Department of Mathematical Sciences, University of Liverpool
References:
Abstract: Let $X$ be a nonsingular projective threefold over an algebraically closed field and let $A^2(X)$ be the group of algebraically trivial codimension 2 algebraic cycles on $X$ modulo rational equivalence with coefficients in $\mathbb Q$. Assume that $X$ is birationally equivalent to a threefold $X'$ fibered over an integral curve $C$ with generic fiber $X_{\bar \eta }$ satisfying the following three conditions: the motive $M(X'_{\bar \eta })$ is finite-dimensional; $H^1_{\mathrm{et}}(X_{\bar\eta},{\mathbb Q}_l)=\nobreak0$; $H^2_{\mathrm{et}}(X_{\bar \eta },{\mathbb Q} _l(1))$ is spanned by divisors on $X_{\bar \eta }$. We prove that under these three assumptions the group $A^2(X)$ is weakly representable: there exist a curve $Y$ and a correspondence $z$ on $Y\times X$ such that $z$ induces an epimorphism $A^1(Y)\to A^2(X)$, where $A^1(Y)$ is isomorphic to ${\mathrm{Pic}}^0(Y)$ tensored with $\mathbb Q$. In particular, this result holds for threefolds birationally equivalent to three-dimensional del Pezzo fibrations over a curve.
Bibliography: 12 titles.
Keywords: algebraic cycles, threefolds, motives, spreads.
Received: 05.10.2007 and 04.07.2008
Russian version:
Matematicheskii Sbornik, 2009, Volume 200, Number 3, Pages 17–30
DOI: https://doi.org/10.4213/sm3952
Bibliographic databases:
UDC: 512.734
MSC: 14C15, 14C25
Language: English
Original paper language: Russian
Citation: V. I. Guletskii, “On the continuous part of codimension 2 algebraic cycles on three-dimensional varieties”, Mat. Sb., 200:3 (2009), 17–30; Sb. Math., 200:3 (2009), 325–338
Citation in format AMSBIB
\Bibitem{Gul09}
\by V.~I.~Guletskii
\paper On the continuous part of codimension~2 algebraic
cycles on three-dimensional varieties
\jour Mat. Sb.
\yr 2009
\vol 200
\issue 3
\pages 17--30
\mathnet{http://mi.mathnet.ru/sm3952}
\crossref{https://doi.org/10.4213/sm3952}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2529143}
\zmath{https://zbmath.org/?q=an:1169.14005}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2009SbMat.200..325G}
\elib{https://elibrary.ru/item.asp?id=19066113}
\transl
\jour Sb. Math.
\yr 2009
\vol 200
\issue 3
\pages 325--338
\crossref{https://doi.org/10.1070/SM2009v200n03ABEH003998}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000267858800002}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-67650928674}
Linking options:
  • https://www.mathnet.ru/eng/sm3952
  • https://doi.org/10.1070/SM2009v200n03ABEH003998
  • https://www.mathnet.ru/eng/sm/v200/i3/p17
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник Sbornik: Mathematics
    Statistics & downloads:
    Abstract page:408
    Russian version PDF:204
    English version PDF:9
    References:68
    First page:7
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024