Sbornik: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sbornik: Mathematics, 2009, Volume 200, Issue 9, Pages 1261–1297
DOI: https://doi.org/10.1070/SM2009v200n09ABEH004037
(Mi sm3934)
 

This article is cited in 4 scientific papers (total in 4 papers)

Meromorphic approximants to complex Cauchy transforms with polar singularities

L. Baratchart, M. L. Yattselev

Institut National de Recherche en Informatique et en Automatique, Sophia Antipolis – Méditerranée
References:
Abstract: We study AAK-type meromorphic approximants to functions of the form
$$ F(z)=\int\frac{d\lambda(t)}{z-t}+R(z), $$
where $R$ is a rational function and $\lambda$ is a complex measure with compact regular support included in $(-1,1)$, whose argument has bounded variation on the support. The approximation is understood in the $L^p$-norm of the unit circle, $p\geqslant2$. We dwell on the fact that the denominators of such approximants satisfy certain non-Hermitian orthogonal relations with varying weights. They resemble the orthogonality relations that arise in the study of multipoint Padé approximants. However, the varying part of the weight implicitly depends on the orthogonal polynomials themselves, which constitutes the main novelty and the main difficulty of the undertaken analysis. We obtain that the counting measures of poles of the approximants converge to the Green equilibrium distribution on the support of $\lambda$ relative to the unit disc, that the approximants themselves converge in capacity to $F$, and that the poles of $R$ attract at least as many poles of the approximants as their multiplicity and not much more.
Bibliography: 35 titles.
Keywords: meromorphic approximation, AAK-theory, rational approximation, orthogonal polynomials, non-Hermitian orthogonality, Hardy spaces, critical points.
Received: 02.08.2007 and 02.07.2008
Russian version:
Matematicheskii Sbornik, 2009, Volume 200, Number 9, Pages 3–40
DOI: https://doi.org/10.4213/sm3934
Bibliographic databases:
UDC: 517.53
MSC: Primary 41A20, 41A30, 42C05; Secondary 30D50, 30D55, 30E10, 31A15
Language: English
Original paper language: Russian
Citation: L. Baratchart, M. L. Yattselev, “Meromorphic approximants to complex Cauchy transforms with polar singularities”, Mat. Sb., 200:9 (2009), 3–40; Sb. Math., 200:9 (2009), 1261–1297
Citation in format AMSBIB
\Bibitem{BarYat09}
\by L.~Baratchart, M.~L.~Yattselev
\paper Meromorphic approximants to complex Cauchy transforms with polar singularities
\jour Mat. Sb.
\yr 2009
\vol 200
\issue 9
\pages 3--40
\mathnet{http://mi.mathnet.ru/sm3934}
\crossref{https://doi.org/10.4213/sm3934}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2583969}
\zmath{https://zbmath.org/?q=an:05663042}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2009SbMat.200.1261B}
\elib{https://elibrary.ru/item.asp?id=19066152}
\transl
\jour Sb. Math.
\yr 2009
\vol 200
\issue 9
\pages 1261--1297
\crossref{https://doi.org/10.1070/SM2009v200n09ABEH004037}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000273971200001}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-70450208767}
Linking options:
  • https://www.mathnet.ru/eng/sm3934
  • https://doi.org/10.1070/SM2009v200n09ABEH004037
  • https://www.mathnet.ru/eng/sm/v200/i9/p3
  • This publication is cited in the following 4 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник Sbornik: Mathematics
    Statistics & downloads:
    Abstract page:504
    Russian version PDF:164
    English version PDF:16
    References:76
    First page:6
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024