|
This article is cited in 9 scientific papers (total in 9 papers)
Zeros of the Green's function for the de la Vallée-Poussin problem
Yu. V. Pokornyi Voronezh State University
Abstract:
The Green's function for the de la Vallée-Poussin problem
\begin{gather*}
Lx\equiv x^{(n)}+p_1(t)x^{(n-1)}+\dots+p_n(t)x=f,
\\
x(a_i)=A_i^{(0)}, \ \ x'(a_i)=A_i^{(1)}, \ \ \dots, \ \ x^{(\nu_i-1)}(a_i)=A_i^{(\nu_i-1)},
\ \ i= {1,\dots,m},
\end{gather*}
where $a=a_1<a_2<\dots<a_m=b$, $m\geqslant2$,
$\sum\nu_i=n$, $p_i(\,\cdot\,)$ and $f(\,\cdot\,)\in L_1[a,b]$, is investigated.
It is defined in the square $a\leqslant t,s\leqslant b$, and vanishes at the lines
$t=a_i$, $i={1,\dots,m}$, $s=a$, $s=b$;
it is proved that the orders of its zeros have uniform bounds.
Bibliography: 27 titles.
Received: 19.04.2007 and 16.11.2007
Citation:
Yu. V. Pokornyi, “Zeros of the Green's function for the de la Vallée-Poussin problem”, Mat. Sb., 199:6 (2008), 105–136; Sb. Math., 199:6 (2008), 891–921
Linking options:
https://www.mathnet.ru/eng/sm3860https://doi.org/10.1070/SM2008v199n06ABEH003946 https://www.mathnet.ru/eng/sm/v199/i6/p105
|
Statistics & downloads: |
Abstract page: | 652 | Russian version PDF: | 280 | English version PDF: | 24 | References: | 79 | First page: | 13 |
|