Sbornik: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sbornik: Mathematics, 2008, Volume 199, Issue 7, Pages 1009–1031
DOI: https://doi.org/10.1070/SM2008v199n07ABEH003951
(Mi sm3853)
 

This article is cited in 2 scientific papers (total in 2 papers)

An explicit formula for the number of classes of primitive hyperbolic elements in the group $\Gamma_0(N)$

V. V. Golovchanskii, M. N. Smotrov

Institute for Applied Mathematics, Khabarovsk Division, Far-Eastern Branch of the Russian Academy of Sciences
References:
Abstract: An explicit formula expressing the number of classes of primitive hyperbolic elements in the congruence subgroup $\Gamma_0(N)$ (the number of closed geodesics) in terms of the number of equivalence classes of indefinite binary quadratic forms is obtained. The well-known formulae for the numbers of classes of elliptic and parabolic elements in $\Gamma_0(N)$ are special cases of this formula.
Bibliography: 11 titles.
Received: 15.03.2007 and 17.03.2008
Bibliographic databases:
UDC: 511.342.2+512.817.2+514.774.8
MSC: Primary 30F35; Secondary 20H05, 20H10
Language: English
Original paper language: Russian
Citation: V. V. Golovchanskii, M. N. Smotrov, “An explicit formula for the number of classes of primitive hyperbolic elements in the group $\Gamma_0(N)$”, Sb. Math., 199:7 (2008), 1009–1031
Citation in format AMSBIB
\Bibitem{GolSmo08}
\by V.~V.~Golovchanskii, M.~N.~Smotrov
\paper An explicit formula for the number of classes of primitive hyperbolic elements in the group $\Gamma_0(N)$
\jour Sb. Math.
\yr 2008
\vol 199
\issue 7
\pages 1009--1031
\mathnet{http://mi.mathnet.ru//eng/sm3853}
\crossref{https://doi.org/10.1070/SM2008v199n07ABEH003951}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2488223}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000260697900004}
\elib{https://elibrary.ru/item.asp?id=20425532}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-57049145878}
Linking options:
  • https://www.mathnet.ru/eng/sm3853
  • https://doi.org/10.1070/SM2008v199n07ABEH003951
  • https://www.mathnet.ru/eng/sm/v199/i7/p63
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник Sbornik: Mathematics
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024