Sbornik: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sbornik: Mathematics, 1999, Volume 190, Issue 2, Pages 255–283
DOI: https://doi.org/10.1070/sm1999v190n02ABEH000385
(Mi sm385)
 

This article is cited in 8 scientific papers (total in 8 papers)

Conformal geometry of symmetric spaces and generalized linear-fractional maps of Krein–Shmul'yan

Yu. A. Neretin

Moscow State Institute of Electronics and Mathematics
References:
Abstract: The matrix balls $\mathrm B_{p,q}$ consisting of $p\times q$-matrices of norm $<1$ over $\mathbb C$ are considered. These balls are one possible realization of the symmetric spaces $\mathrm B_{p,q}=\operatorname U(p,q)/\operatorname U(p)\times\operatorname U(q)$. Generalized linear-fractional maps are maps $\mathrm B_{p,q}\to\mathrm B_{r,s}$ of the form $Z\mapsto K+LZ(1-NZ)^{-1}$ (they are in general neither injective nor surjective). Characterizations of generalized linear-fractional maps in the spirit of the “fundamental theorem of projective geometry” are obtained: for a certain family of submanifolds of $\mathrm B_{p,q}$ (“quasilines”) it is shown that maps taking quasilines to quasilines are generalized linear-fractional. In addition, for the standard field of cones on $\mathrm B_{p,q}$ (described by the inequality $\operatorname{rk}dZ\leqslant 1$) it is shown that maps taking cones to cones are generalized linear-fractional.
Received: 12.05.1998
Russian version:
Matematicheskii Sbornik, 1999, Volume 190, Number 2, Pages 93–122
DOI: https://doi.org/10.4213/sm385
Bibliographic databases:
UDC: 514.76
MSC: Primary 32M15, 53C35; Secondary 53C10
Language: English
Original paper language: Russian
Citation: Yu. A. Neretin, “Conformal geometry of symmetric spaces and generalized linear-fractional maps of Krein–Shmul'yan”, Mat. Sb., 190:2 (1999), 93–122; Sb. Math., 190:2 (1999), 255–283
Citation in format AMSBIB
\Bibitem{Ner99}
\by Yu.~A.~Neretin
\paper Conformal geometry of symmetric spaces and generalized linear-fractional maps of Krein--Shmul'yan
\jour Mat. Sb.
\yr 1999
\vol 190
\issue 2
\pages 93--122
\mathnet{http://mi.mathnet.ru/sm385}
\crossref{https://doi.org/10.4213/sm385}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1701002}
\zmath{https://zbmath.org/?q=an:0967.53036}
\transl
\jour Sb. Math.
\yr 1999
\vol 190
\issue 2
\pages 255--283
\crossref{https://doi.org/10.1070/sm1999v190n02ABEH000385}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000081091800010}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-0033246629}
Linking options:
  • https://www.mathnet.ru/eng/sm385
  • https://doi.org/10.1070/sm1999v190n02ABEH000385
  • https://www.mathnet.ru/eng/sm/v190/i2/p93
  • This publication is cited in the following 8 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник - 1992–2005 Sbornik: Mathematics
    Statistics & downloads:
    Abstract page:651
    Russian version PDF:248
    English version PDF:12
    References:46
    First page:3
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024