Sbornik: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sbornik: Mathematics, 2007, Volume 198, Issue 8, Pages 1111–1117
DOI: https://doi.org/10.1070/SM2007v198n08ABEH003875
(Mi sm3795)
 

This article is cited in 6 scientific papers (total in 6 papers)

Lengths of lemniscates. Variations of rational functions

V. I. Danchenko

Vladimir State University
References:
Abstract: The problem under consideration is the estimate of the length of the lemniscate
$$ L(P,r)=\{z:|P(z)|=r^n\}, $$
where
$$ P(z)=\prod_{k=1}^{n}(z-z_k),\qquad z_k\in\mathbb C,\quad r>0. $$
It is shown that $|L(P,r)|\le 2\pi n r$. A sharp estimate for the variation of a rational function along a curve of bounded rotation of the secant is also obtained.
Bibliography: 15 titles.
Received: 08.11.2006 and 12.03.2007
Russian version:
Matematicheskii Sbornik, 2007, Volume 198, Number 8, Pages 51–58
DOI: https://doi.org/10.4213/sm3795
Bibliographic databases:
UDC: 517.535.2+517.535
MSC: Primary 30A10, 26D05; Secondary 31A15
Language: English
Original paper language: Russian
Citation: V. I. Danchenko, “Lengths of lemniscates. Variations of rational functions”, Mat. Sb., 198:8 (2007), 51–58; Sb. Math., 198:8 (2007), 1111–1117
Citation in format AMSBIB
\Bibitem{Dan07}
\by V.~I.~Danchenko
\paper Lengths of lemniscates. Variations of rational functions
\jour Mat. Sb.
\yr 2007
\vol 198
\issue 8
\pages 51--58
\mathnet{http://mi.mathnet.ru/sm3795}
\crossref{https://doi.org/10.4213/sm3795}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2355435}
\zmath{https://zbmath.org/?q=an:1139.30002}
\elib{https://elibrary.ru/item.asp?id=9541664}
\transl
\jour Sb. Math.
\yr 2007
\vol 198
\issue 8
\pages 1111--1117
\crossref{https://doi.org/10.1070/SM2007v198n08ABEH003875}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000250726000010}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-35948966004}
Linking options:
  • https://www.mathnet.ru/eng/sm3795
  • https://doi.org/10.1070/SM2007v198n08ABEH003875
  • https://www.mathnet.ru/eng/sm/v198/i8/p51
  • This publication is cited in the following 6 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник Sbornik: Mathematics
    Statistics & downloads:
    Abstract page:680
    Russian version PDF:249
    English version PDF:17
    References:64
    First page:11
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024