Sbornik: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sbornik: Mathematics, 2008, Volume 199, Issue 2, Pages 185–206
DOI: https://doi.org/10.1070/SM2008v199n02ABEH003915
(Mi sm3777)
 

This article is cited in 3 scientific papers (total in 3 papers)

Gauss–Arnoldi quadrature for $\bigl\langle(zI-A)^{-1}\varphi,\varphi\bigr\rangle$ and rational Padé-type approximation for Markov-type functions

L. A. Knizhnerman

Central Geophysical Expedition
References:
Abstract: The efficiency of Gauss–Arnoldi quadrature for the calculation of the quantity $\bigl\langle(zI-A)^{-1}\varphi,\varphi\bigr\rangle$ is studied, where $A$ is a bounded operator in a Hilbert space and $\varphi$ is a non-trivial vector in this space. A necessary and a sufficient conditions are found for the efficiency of the quadrature in the case of a normal operator. An example of a non-normal operator for which this quadrature is inefficient is presented.
It is shown that Gauss–Arnoldi quadrature is related in certain cases to rational Padé-type approximation (with the poles at Ritz numbers) for functions of Markov type and, in particular, can be used for the localization of the poles of a rational perturbation. Error estimates are found, which can also be used when classical Padé approximation does not work or it may not be efficient.
Theoretical results and conjectures are illustrated by numerical experiments.
Bibliography: 44 titles.
Received: 11.10.2006 and 05.07.2007
Russian version:
Matematicheskii Sbornik, 2008, Volume 199, Number 2, Pages 27–48
DOI: https://doi.org/10.4213/sm3777
Bibliographic databases:
UDC: 519.644+519.651+517.538.52
MSC: Primary 65J99, 41A21; Secondary 65F15
Language: English
Original paper language: Russian
Citation: L. A. Knizhnerman, “Gauss–Arnoldi quadrature for $\bigl\langle(zI-A)^{-1}\varphi,\varphi\bigr\rangle$ and rational Padé-type approximation for Markov-type functions”, Mat. Sb., 199:2 (2008), 27–48; Sb. Math., 199:2 (2008), 185–206
Citation in format AMSBIB
\Bibitem{Kni08}
\by L.~A.~Knizhnerman
\paper Gauss--Arnoldi quadrature for $\bigl\langle(zI-A)^{-1}\varphi,\varphi\bigr\rangle$ and rational Pad\'e-type approximation for Markov-type functions
\jour Mat. Sb.
\yr 2008
\vol 199
\issue 2
\pages 27--48
\mathnet{http://mi.mathnet.ru/sm3777}
\crossref{https://doi.org/10.4213/sm3777}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2402197}
\zmath{https://zbmath.org/?q=an:1161.65011}
\elib{https://elibrary.ru/item.asp?id=20359302}
\transl
\jour Sb. Math.
\yr 2008
\vol 199
\issue 2
\pages 185--206
\crossref{https://doi.org/10.1070/SM2008v199n02ABEH003915}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000255696300008}
\elib{https://elibrary.ru/item.asp?id=14113465}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-44449170494}
Linking options:
  • https://www.mathnet.ru/eng/sm3777
  • https://doi.org/10.1070/SM2008v199n02ABEH003915
  • https://www.mathnet.ru/eng/sm/v199/i2/p27
  • This publication is cited in the following 3 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник Sbornik: Mathematics
    Statistics & downloads:
    Abstract page:893
    Russian version PDF:225
    English version PDF:20
    References:65
    First page:11
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024