Sbornik: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sbornik: Mathematics, 2007, Volume 198, Issue 3, Pages 433–446
DOI: https://doi.org/10.1070/SM2007v198n03ABEH003843
(Mi sm3773)
 

This article is cited in 10 scientific papers (total in 10 papers)

Gromov–Witten invariants of Fano threefolds of genera 6 and 8

V. V. Przyjalkowski

Steklov Mathematical Institute, Russian Academy of Sciences
References:
Abstract: The aim of the paper is to prove in the case of the Fano threefolds $V_{10}$ and $V_{14}$ Golyshev's conjecture on the modularity of the $D3$ equations for smooth Fano threefolds with Picard group $\mathbb Z$. More precisely, the counting matrices of prime two-pointed invariants of $V_{10}$ and $V_{14}$ are found with the help of a method allowing one to find the Gromov–Witten invariants of complete intersections in varieties for which these invariants are (partially) known.
Bibliography: 33 titles.
Received: 13.07.2004 and 20.04.2006
Russian version:
Matematicheskii Sbornik, 2007, Volume 198, Number 3, Pages 145–158
DOI: https://doi.org/10.4213/sm3773
Bibliographic databases:
Document Type: Article
UDC: 512.776
MSC: 14J45, 11F23
Language: English
Original paper language: Russian
Citation: V. V. Przyjalkowski, “Gromov–Witten invariants of Fano threefolds of genera 6 and 8”, Mat. Sb., 198:3 (2007), 145–158; Sb. Math., 198:3 (2007), 433–446
Citation in format AMSBIB
\Bibitem{Prz07}
\by V.~V.~Przyjalkowski
\paper Gromov--Witten invariants of Fano threefolds of genera~6 and~8
\jour Mat. Sb.
\yr 2007
\vol 198
\issue 3
\pages 145--158
\mathnet{http://mi.mathnet.ru/sm3773}
\crossref{https://doi.org/10.4213/sm3773}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2354283}
\zmath{https://zbmath.org/?q=an:1188.14038}
\elib{https://elibrary.ru/item.asp?id=9469184}
\transl
\jour Sb. Math.
\yr 2007
\vol 198
\issue 3
\pages 433--446
\crossref{https://doi.org/10.1070/SM2007v198n03ABEH003843}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000247946700006}
\elib{https://elibrary.ru/item.asp?id=14638741}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-34547869318}
Linking options:
  • https://www.mathnet.ru/eng/sm3773
  • https://doi.org/10.1070/SM2007v198n03ABEH003843
  • https://www.mathnet.ru/eng/sm/v198/i3/p145
  • This publication is cited in the following 10 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник Sbornik: Mathematics
    Statistics & downloads:
    Abstract page:588
    Russian version PDF:301
    English version PDF:14
    References:50
    First page:3
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024