Loading [MathJax]/jax/output/SVG/config.js
Mathematics of the USSR-Sbornik
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mathematics of the USSR-Sbornik, 1975, Volume 27, Issue 3, Pages 325–338
DOI: https://doi.org/10.1070/SM1975v027n03ABEH002517
(Mi sm3715)
 

This article is cited in 7 scientific papers (total in 7 papers)

On the density of solutions of an equation in $\mathbf{CP}^2$

B. Müller
References:
Abstract: In this paper we consider the system
\begin{equation} \dot u=P(u), \end{equation}
where $u=(u_0,u_1,u_2)\in\mathbf C^3$, $P=(P_0,P_1,P_2)$ and the $P_i$ are homogeneous polynomials of degree $2n$ ($n\geqslant1$) with complex coefficients. Let $A_n$ be the space of coefficients of the right-hand sides of the system (1). Any point $\alpha\in A_n$ defines a system of the form (1).
Our aim in this paper is to show that the property of the solutions of the system (1) being dense in $\mathbf{CP}^2$ is locally characteristic, i.e. we prove that in $A_n$ there exists an open set $U$ such that the solutions of the system (1) with right-hand side $\alpha\in U$ are everywhere dense in $\mathbf{CP}^2$.
This result can be extended without difficulty to the case in which the degree of the homogeneous polynomials appearing in the right-hand side of the system (1) is odd.
Bibliography: 4 titles.
Received: 18.06.1974
Bibliographic databases:
UDC: 517.92
MSC: Primary 34C05; Secondary 34A20
Language: English
Original paper language: Russian
Citation: B. Müller, “On the density of solutions of an equation in $\mathbf{CP}^2$”, Math. USSR-Sb., 27:3 (1975), 325–338
Citation in format AMSBIB
\Bibitem{Mul75}
\by B.~M\"uller
\paper On~the density of solutions of an equation in~$\mathbf{CP}^2$
\jour Math. USSR-Sb.
\yr 1975
\vol 27
\issue 3
\pages 325--338
\mathnet{http://mi.mathnet.ru/eng/sm3715}
\crossref{https://doi.org/10.1070/SM1975v027n03ABEH002517}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=466689}
\zmath{https://zbmath.org/?q=an:0319.34006}
Linking options:
  • https://www.mathnet.ru/eng/sm3715
  • https://doi.org/10.1070/SM1975v027n03ABEH002517
  • https://www.mathnet.ru/eng/sm/v140/i3/p363
  • This publication is cited in the following 7 articles:
    1. Aurélien Alvarez, Bertrand Deroin, “Stabilité structurelle du feuilletage de Jouanolou de degré 2”, Publ.math.IHES, 2025  crossref
    2. Nataliya Goncharuk, Yury Kudryashov, “Genera of non-algebraic leaves of polynomial foliations of $\mathbb C^2$”, Mosc. Math. J., 18:1 (2018), 63–83  mathnet  crossref
    3. N Goncharuk, Yu Kudryashov, “Cheap complex limit cycles”, Nonlinearity, 31:3 (2018), 909  crossref
    4. John Erik Fornæss, Nessim Sibony, “Unique Ergodicity of Harmonic Currents On Singular Foliations of ${\mathbb{P}^2}$”, Geom. Funct. Anal., 19:5 (2010), 1334  crossref
    5. J.E.rik Fornæss, Nessim Sibony, “Riemann Surface Laminations with Singularities”, J Geom Anal, 18:2 (2008), 400  crossref  mathscinet
    6. A. A. Shcherbakov, “Dynamics of Local Groups of Conformal Mappings and Generic Properties of Differential Equations on $\mathbb C^2$”, Proc. Steklov Inst. Math., 254 (2006), 103–120  mathnet  crossref  mathscinet  zmath  elib
    7. Ilyashenko Y., “Centennial History of Hilbert's 16th Problem”, Bull. Amer. Math. Soc., 39:3 (2002), 301–354  crossref  mathscinet  zmath  isi
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник (новая серия) - 1964–1988 Sbornik: Mathematics
    Statistics & downloads:
    Abstract page:261
    Russian version PDF:76
    English version PDF:5
    References:50
     
      Contact us:
    math-net2025_04@mi-ras.ru
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025