Sbornik: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sbornik: Mathematics, 2008, Volume 199, Issue 4, Pages 557–578
DOI: https://doi.org/10.1070/SM2008v199n04ABEH003933
(Mi sm3697)
 

This article is cited in 3 scientific papers (total in 3 papers)

A priori estimates, existence and non-existence for quasilinear cooperative elliptic systems

H. Zou

University of Alabama at Birmingham
References:
Abstract: Let $m>1$ be a real number and let $\Omega\subset\mathbb R^n$, $n\geqslant2$, be a connected smooth domain. Consider the system of quasi-linear elliptic differential equations
\begin{align*} \operatorname{div}(|\nabla u|^{m-2}\nabla u)+f(u,v)&=0\quad\text{in } \Omega, \\ \operatorname{div}(|\nabla v|^{m-2}\nabla v)+g(u,v)&=0\quad\text{in } \Omega, \end{align*}
where $u\geqslant0$, $v\geqslant0$, $f$ and $g$ are real functions. Relations between the Liouville non-existence and a priori estimates and existence on bounded domains are studied. Under appropriate conditions, a variety of results on a priori estimates, existence and non-existence of positive solutions have been established.
Bibliography: 11 titles.
Received: 25.09.2006 and 17.07.2007
Bibliographic databases:
UDC: 517.956.2
MSC: Primary 35J55; Secondary 35J65
Language: English
Original paper language: Russian
Citation: H. Zou, “A priori estimates, existence and non-existence for quasilinear cooperative elliptic systems”, Sb. Math., 199:4 (2008), 557–578
Citation in format AMSBIB
\Bibitem{Zou08}
\by H.~Zou
\paper A priori estimates, existence and non-existence for quasilinear cooperative elliptic systems
\jour Sb. Math.
\yr 2008
\vol 199
\issue 4
\pages 557--578
\mathnet{http://mi.mathnet.ru//eng/sm3697}
\crossref{https://doi.org/10.1070/SM2008v199n04ABEH003933}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2410141}
\zmath{https://zbmath.org/?q=an:1161.35377}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000257185400012}
\elib{https://elibrary.ru/item.asp?id=20359322}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-47949132212}
Linking options:
  • https://www.mathnet.ru/eng/sm3697
  • https://doi.org/10.1070/SM2008v199n04ABEH003933
  • https://www.mathnet.ru/eng/sm/v199/i4/p83
  • This publication is cited in the following 3 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник Sbornik: Mathematics
    Statistics & downloads:
    Abstract page:477
    Russian version PDF:214
    English version PDF:7
    References:45
    First page:10
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024