Mathematics of the USSR-Sbornik
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mathematics of the USSR-Sbornik, 1974, Volume 23, Issue 2, Pages 185–214
DOI: https://doi.org/10.1070/SM1974v023n02ABEH002176
(Mi sm3678)
 

This article is cited in 16 scientific papers (total in 17 papers)

Nonunimodular ring groups and Hopf–von Neumann algebras

L. I. Vainerman, G. I. Kats
References:
Abstract: A number of authors have introduced ring groups as objects generalizing locally compact groups. An analogue of the Pontryagin principle of duality holds for ring groups. In this paper we introduce a wider class of ring groups, one including the locally compact groups.
A construction is given whereby to each ring group $\mathfrak G$ there is defined a dual ring group $\widehat{\mathfrak G}$; here $\widehat{\widehat{\mathfrak G}}=\mathfrak G$. By definition a ring group is determined by a $W^*$-algebra $\mathfrak A$ (the space of the ring group) equipped with an additional structure which allows $ \mathfrak A$ to be considered, in particular, as a Hopf–von Neumann algebra. When $\mathfrak G$ is a locally compact group, $\mathfrak A$ is the $W^*$-algebra of bounded measurable functions on $\mathfrak G$, considered in the natural way as operators in $L_2(\mathfrak G)$.
Bibliography: 15 titles.
Received: 30.05.1973
Russian version:
Matematicheskii Sbornik. Novaya Seriya, 1974, Volume 94(136), Number 2(6), Pages 194–225
Bibliographic databases:
UDC: 519.46
MSC: Primary 22D35, 46L10; Secondary 46K15
Language: English
Original paper language: Russian
Citation: L. I. Vainerman, G. I. Kats, “Nonunimodular ring groups and Hopf–von Neumann algebras”, Mat. Sb. (N.S.), 94(136):2(6) (1974), 194–225; Math. USSR-Sb., 23:2 (1974), 185–214
Citation in format AMSBIB
\Bibitem{VaiKat74}
\by L.~I.~Vainerman, G.~I.~Kats
\paper Nonunimodular ring groups and Hopf--von~Neumann algebras
\jour Mat. Sb. (N.S.)
\yr 1974
\vol 94(136)
\issue 2(6)
\pages 194--225
\mathnet{http://mi.mathnet.ru/sm3678}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=348038}
\zmath{https://zbmath.org/?q=an:0307.46051}
\transl
\jour Math. USSR-Sb.
\yr 1974
\vol 23
\issue 2
\pages 185--214
\crossref{https://doi.org/10.1070/SM1974v023n02ABEH002176}
Linking options:
  • https://www.mathnet.ru/eng/sm3678
  • https://doi.org/10.1070/SM1974v023n02ABEH002176
  • https://www.mathnet.ru/eng/sm/v136/i2/p194
  • This publication is cited in the following 17 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник (новая серия) - 1964–1988 Sbornik: Mathematics
    Statistics & downloads:
    Abstract page:396
    Russian version PDF:115
    English version PDF:33
    References:64
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024