Mathematics of the USSR-Sbornik
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mathematics of the USSR-Sbornik, 1975, Volume 27, Issue 1, Pages 85–92
DOI: https://doi.org/10.1070/SM1975v027n01ABEH002501
(Mi sm3673)
 

This article is cited in 10 scientific papers (total in 10 papers)

Sets of $H$-fixed points are absolute extensors

Yu. M. Smirnov
References:
Abstract: The necessity part of a theorem of Jaworowski on the extension of periodic homeomorphisms is strengthened (RZhMat., 1973, 2A433). Let $\mathscr B$ $(\mathscr M)$ be the class of all compact Hausdorff spaces (metrizable spaces), and let $\mathscr B(G)$ ($\mathscr M(G)$) be the class of all compact Hausdorff spaces (metrizable spaces) considered with all possible actions of a topological group $G$.
Theorems B and M. {\it If a topological space $Y$ on which a group $G\in\mathscr B$ $(G\in\mathscr M)$ acts is an extensor of $\mathscr B(G)$ $(\mathscr M(G))$, then for every closed subgroup $H$ of $G$ the set $Y[H]=\{y\in Y\mid hy=y\ \forall\,h\in H\}$ of all "$H$-fixed points" is an extensor of the class $\mathscr B(\mathscr M)$.}
These theorems are also valid for the neighborhood case under the additional condition that for mappings $f\colon A\to Y[H]$ extendible to $X$ the dimension $\dim(X\setminus A)\leqslant n+1$, and for equivariant mappings $g\colon B\to Y$ extendible to $X$ the dimension $\dim(X\setminus B)\leqslant n+1+\dim G$.
Bibliography: 15 titles.
Received: 27.12.1974
Bibliographic databases:
UDC: 513.83
MSC: Primary 54C55, 54H25; Secondary 54C15, 54C20, 54D30, 54D45, 54F45
Language: English
Original paper language: Russian
Citation: Yu. M. Smirnov, “Sets of $H$-fixed points are absolute extensors”, Math. USSR-Sb., 27:1 (1975), 85–92
Citation in format AMSBIB
\Bibitem{Smi75}
\by Yu.~M.~Smirnov
\paper Sets of~$H$-fixed points are absolute extensors
\jour Math. USSR-Sb.
\yr 1975
\vol 27
\issue 1
\pages 85--92
\mathnet{http://mi.mathnet.ru//eng/sm3673}
\crossref{https://doi.org/10.1070/SM1975v027n01ABEH002501}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=394611}
\zmath{https://zbmath.org/?q=an:0315.54022}
Linking options:
  • https://www.mathnet.ru/eng/sm3673
  • https://doi.org/10.1070/SM1975v027n01ABEH002501
  • https://www.mathnet.ru/eng/sm/v140/i1/p93
  • This publication is cited in the following 10 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник (новая серия) - 1964–1988 Sbornik: Mathematics
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024