Mathematics of the USSR-Sbornik
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mathematics of the USSR-Sbornik, 1975, Volume 26, Issue 3, Pages 349–364
DOI: https://doi.org/10.1070/SM1975v026n03ABEH002485
(Mi sm3657)
 

This article is cited in 2 scientific papers (total in 2 papers)

On a sharp Liouville theorem for solutions of a parabolic equation on a characteristic

A. L. Gusarov
References:
Abstract: The equation $u_t=Lu+c(x)$ is considered in the strip $0<t\leqslant T$. The operator $L=\sum_{i,j=1}^n\frac\partial{\partial x_i}\bigl(a_{ij}(x)\frac\partial{\partial x_j}\bigr)$ is a selfadjoint uniformly elliptic operator of second order, $a_{ij}\in C^2(\mathbf R^n)$, $c\in C^1(\mathbf R^n)$, $|D^\beta a_{ij}(x)|=o(|x|^{-|\beta|})$, $|\beta|=1,2$, and $|c(x)|=o(|x|^{-2})$. For a solution $u$ of this equation the following assertions are proved: if $|u(t,x)|=O(\exp\varphi(|x|))$ ($\varphi(r)\geqslant r^{2+\varepsilon}$ is an arbitrary increasing function of one variable) uniformly in $t$ and if in some cone on the characteristic $t=T$ we have $|u(T,x)|=O(\exp(-C\varphi(C'|x|)))$ ($C$ and $C'$ are constants which depend on the equation and the vertex angle of the cone), then $u(T,x)\equiv0$; if $u(T,x)|=O(\exp K|x|^2)$ and if in the cone we have $|u(T,x)|=O(\exp(-C(K+1/T)|x|^2))$ then $u(t,x)\equiv0$.
Bibliography: 11 titles.
Received: 13.12.1974
Bibliographic databases:
UDC: 517.946
MSC: Primary 35K10; Secondary 35B05, 35K15
Language: English
Original paper language: Russian
Citation: A. L. Gusarov, “On a sharp Liouville theorem for solutions of a parabolic equation on a characteristic”, Math. USSR-Sb., 26:3 (1975), 349–364
Citation in format AMSBIB
\Bibitem{Gus75}
\by A.~L.~Gusarov
\paper On~a~sharp Liouville theorem for solutions of~a~parabolic equation on~a~characteristic
\jour Math. USSR-Sb.
\yr 1975
\vol 26
\issue 3
\pages 349--364
\mathnet{http://mi.mathnet.ru//eng/sm3657}
\crossref{https://doi.org/10.1070/SM1975v026n03ABEH002485}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=380108}
\zmath{https://zbmath.org/?q=an:0308.35058}
Linking options:
  • https://www.mathnet.ru/eng/sm3657
  • https://doi.org/10.1070/SM1975v026n03ABEH002485
  • https://www.mathnet.ru/eng/sm/v139/i3/p379
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник (новая серия) - 1964–1988 Sbornik: Mathematics
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024