Mathematics of the USSR-Sbornik
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mathematics of the USSR-Sbornik, 1969, Volume 9, Issue 2, Pages 241–251
DOI: https://doi.org/10.1070/SM1969v009n02ABEH002049
(Mi sm3616)
 

This article is cited in 7 scientific papers (total in 7 papers)

On a class of nonlinear equations in a space of measurable functions

N. V. Krylov
References:
Abstract: We consider a class of equations in a space of measurable functions that contains a large number of equations involving the value of a game in the theory of optimal control by stochastic processes. We prove the following
Theorem. {\it Let $L$ be a $B$-space of measurable functions, $W\subset L$$B$-space with weakly compact sphere for some norm, $V_0$ a subspace of $W$ that is dense in $L,$ $v_0\in W$ and $V=V_0+v_0$.
Let $L^{\alpha\beta}$ $(\alpha\in\mathfrak U,$ $\beta\in\mathfrak B(\alpha))$ be a family of operators defined on $W$ with positive resolvents $R_\lambda^{\alpha\beta}$ $(R_\lambda^{\alpha\beta}f\in V_0$ for $f\in L),$ and let $f^{\alpha\beta}$ $(\alpha\in\mathfrak U,$ $\beta\in\mathfrak B(\alpha))$ be a family of functions such that $|f^{\alpha\beta}|\leqslant g\in L$ for all $\alpha$ and $\beta$.
Then $($under certain additional assumptions on $L,$ $W,$ $L^{\alpha\beta},$ $R_\lambda^{\alpha\beta})$ the equation $\lambda u-\inf_{\alpha\in\mathfrak U}\sup_{\beta\in\mathfrak B(\alpha)}(L^{\alpha\beta}u+f^{\alpha\beta})=f $ has a unique solution in $V$ for $\lambda\geqslant0$, $f\in L$. This solution has the form}
$$ u=\inf_{\alpha\in\mathfrak U}\sup_{\beta\in\mathfrak B(\alpha)}R_\lambda^{\alpha\beta}(f^{\alpha\beta}+f+\lambda v_0-L^{\alpha\beta}v_0)+v_0. $$

Bibliography: 6 titles.
Received: 30.10.1968
Bibliographic databases:
UDC: 517.51+513.881
Language: English
Original paper language: Russian
Citation: N. V. Krylov, “On a class of nonlinear equations in a space of measurable functions”, Math. USSR-Sb., 9:2 (1969), 241–251
Citation in format AMSBIB
\Bibitem{Kry69}
\by N.~V.~Krylov
\paper On a~class of nonlinear equations in a~space of measurable functions
\jour Math. USSR-Sb.
\yr 1969
\vol 9
\issue 2
\pages 241--251
\mathnet{http://mi.mathnet.ru//eng/sm3616}
\crossref{https://doi.org/10.1070/SM1969v009n02ABEH002049}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=285946}
\zmath{https://zbmath.org/?q=an:0189.14604|0201.46402}
Linking options:
  • https://www.mathnet.ru/eng/sm3616
  • https://doi.org/10.1070/SM1969v009n02ABEH002049
  • https://www.mathnet.ru/eng/sm/v122/i2/p253
  • This publication is cited in the following 7 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник (новая серия) - 1964–1988 Sbornik: Mathematics
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024